Solve the given system of linear equations. Enter your answer as a point (or ordered pair of numbers) in the form of \( ( x , y ) \) . \( 3 x - 5 y = 27 \) \( 5 x - 3 y = 13\)
Real Tutor Solution
Quick Answer
Solve using the Cramer's rule
\(\left ( x,y\right ) = \left ( - 1,- 6\right ) \)
SOLUTION
Solve the equation
\(\left \{ \begin{array} { l} x= \frac { 27+ 5y} { 3} \\ 5x- 3y= 13\end{array} \right .\)
Solve using substitution
\(5\times \frac { 27+ 5y} { 3} - 3y= 13\)
Simplify
\(\frac { 135+ 16y} { 3} = 13\)
Cross multiply
\(135+ 16y= 3\times 13\)
Evaluate
\(135+ 16y= 39\)
Move the constant to the right side
\(16y= 39- 135\)
Subtract the terms
\(16y= - 96\)
Divide both sides
\(\frac { 16y} { 16} = \frac { - 96} { 16} \)
Simplify
\(\frac { 16y} { 16} = - 6\)
Simplify
\(y= - 6\) \(\text { Substitute the value of } y\) \(x= \frac { 27+ 5\left ( - 6\right ) } { 3} \)
Simplify
\(x= - 1\)
Calculate
\(\left \{ \begin{array} { l} x= - 1\\ y= - 6\end{array} \right .\)
Check the solution
\(\left \{ \begin{array} { l} x= - 1\\ y= - 6\end{array} \right .\)
Enter your question here…