girl-logo

Ask Questions

Calculus Questions & Answers

Q:
Question Evaluate the following limit using L'Hospital's rule. \[ \lim _{x \rightarrow 0^{+}}(2 x)^{\left(\frac{1}{6 \ln (8 x)}\right)} \]
Q:
2. Sea \( f(x)=4 x^{2}-x+5 \) y \( g(x)=2 x^{3}-x \). Encuentra la derivada de \( h(x)=\frac{f(x)}{g(x)} \)
Q:
4. (10 points) Find all relative and absolute extrema of the function \[ f(t)=\frac{1}{2} t^{4}+\frac{10}{3} t^{3} \] with domain \( (-\infty,+\infty) \). Then the same function with domain \( [-2,+\infty) \)
Q:
Question Evaluate the following limit using L'Hospital's rule. \[ \lim _{x \rightarrow 0^{+}}(6 x)^{\left(\frac{1}{7 \ln (3 x)}\right)} \]
Q:
Question Evaluate the following limit using L'Hospital's rule. \[ \lim _{x \rightarrow 1}\left[\frac{2}{6 \ln (x)}-\frac{2}{6 x-6}\right] \] Provide an exact answer.
Q:
1. Dadas las funciones \( f(x)=x^{3}+2 x-1 \) y \( g(x)=x^{2}+1 \), calcula la derivada de \( h(x) \) \( \frac{f(x)}{g(x)} \).
Q:
Question Evaluate the following limit using L'Hospital's rule. \[ \lim _{x \rightarrow 0^{-}}\left(\frac{-7}{x}+\frac{1}{\sin (6 x)}\right) \]
Q:
An object with initial temperature \( 160^{\circ} \mathrm{F} \) is submerged in large tank of water whose temperature is \( 70^{\circ} \mathrm{F} \). Find a formula for \( F(t) \), the temperature of the object after \( t \) minutes, if the cooling constant is \( k=-1.4 \) \( F(t)=\square \)
Q:
3. Sea \( f(x)=x^{5}+3 x^{2} \) y \( g(x)=4 x-x^{2} \). Determina la derivada de \( h(x)=f(x) \cdot g(x) \)
Q:
Question Evaluate the following limit using L'Hospital's rule. \[ \lim _{x \rightarrow 12^{+}}\left[\frac{168}{5 x^{2}-85 x+300}-\frac{2 x}{5 x-60}\right] \] Provide an exact answer.

Test your knowledge on Calculus!

Select the correct answer and check your answer

11 12 13 14 15 16 17 18 19 20
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions