Q:
3. \( -\int \frac{d y}{y \sqrt{y^{2}-16}}= \)
Q:
Encuentre \( \quad D_{1} y \)
\( y-2 \operatorname{sen} x+3 \cos x \)
Q:
1) \( \int \frac{x}{(x-2)^{2}} d x \)
Q:
Aplicar a \( f(x) \) el límite cuando \( x \longrightarrow-3 \) de
\( f(x)=\frac{x^{2}+5 x+6}{x^{2}-x-12} \)
Q:
Question
Use the Second Derivative Test to find the location of all local extrema in the interval \( (-21,-9) \) for the function given
below.
\[ f(x)=\frac{7(x-1)^{2}}{x+9} \]
If there is more than one local maxima or local minima, write each value of \( x \) separated by a comma. If a local maxima or
local minima does not occur on the function, enter \( \varnothing \) in the appropriate box. Answer should be exact.
Q:
lumutes.
Hallar el limite en caso de que exisia
Hollar \( \lim _{x \rightarrow 1} F(x) \) si \( F(x)\left\{\begin{array}{l}x^{2}+2 x-5, \text { si } x<1 \\ 3 x-7, \\ \text { si } x \geq 1 .\end{array}\right. \)
Q:
2. \( -\int \frac{d y}{(y-2)^{3}}= \)
Q:
Question
Consider the function \( f(x) \) below. Over what open interval(s) is the function decreasing and concave down? Give your
answer in interval notation.
\[ f(x)=\frac{x^{3}}{3}-\frac{5 x^{2}}{2}-50 x+1 \]
Enter \( \varnothing \) if the interval does not exist.
Q:
Tentukan hasil dari
\( \int \frac{d x}{\sqrt{8+2 x-x^{2}}} \)
Q:
m. \( \operatorname{Lim}_{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2} \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit