girl-logo

Ask Questions

Calculus Questions & Answers

Q:
lumutes. Hallar el limite en caso de que exisia Hollar \( \lim _{x \rightarrow 1} F(x) \) si \( F(x)\left\{\begin{array}{l}x^{2}+2 x-5, \text { si } x<1 \\ 3 x-7, \\ \text { si } x \geq 1 .\end{array}\right. \)
Q:
2. \( -\int \frac{d y}{(y-2)^{3}}= \)
Q:
Question Consider the function \( f(x) \) below. Over what open interval(s) is the function decreasing and concave down? Give your answer in interval notation. \[ f(x)=\frac{x^{3}}{3}-\frac{5 x^{2}}{2}-50 x+1 \] Enter \( \varnothing \) if the interval does not exist.
Q:
Tentukan hasil dari \( \int \frac{d x}{\sqrt{8+2 x-x^{2}}} \)
Q:
m. \( \operatorname{Lim}_{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2} \)
Q:
1.- \( \int \frac{d x}{9 x^{2}+16}= \)
Q:
\( y ^ { \prime \prime } - y ^ { \prime } - 2 y = 3 e ^ { 2 x } - x ^ { 2 } \)
Q:
k. \( \lim _{x \rightarrow 5} \frac{x^{2}-25}{\sqrt{x^{2}+11}-6} \)
Q:
Encontrar Diy con teorencts de derricasias \[ y=2 \operatorname{sen} x+3 \cos x \]
Q:
Question Use the second derivative test to find the location of all local extrema in the interval \( \left(\frac{11}{8}, \frac{27}{8}\right) \) for the function given below. \[ f(x)=\frac{4 e^{4 x}}{4 x-5} \] If there is more than one local maxima or local minima, write each value of \( x \) separated by a comma. If a local maxima or local minima does not occur on the function, enter \( \varnothing \) in the appropriate box. Enter answer using exact value.

Test your knowledge on Calculus!

Select the correct answer and check your answer

25 26 27 28 29 30 31 32 33 34
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions