Q:
lumutes.
Hallar el limite en caso de que exisia
Hollar \( \lim _{x \rightarrow 1} F(x) \) si \( F(x)\left\{\begin{array}{l}x^{2}+2 x-5, \text { si } x<1 \\ 3 x-7, \\ \text { si } x \geq 1 .\end{array}\right. \)
Q:
2. \( -\int \frac{d y}{(y-2)^{3}}= \)
Q:
Question
Consider the function \( f(x) \) below. Over what open interval(s) is the function decreasing and concave down? Give your
answer in interval notation.
\[ f(x)=\frac{x^{3}}{3}-\frac{5 x^{2}}{2}-50 x+1 \]
Enter \( \varnothing \) if the interval does not exist.
Q:
Tentukan hasil dari
\( \int \frac{d x}{\sqrt{8+2 x-x^{2}}} \)
Q:
m. \( \operatorname{Lim}_{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2} \)
Q:
1.- \( \int \frac{d x}{9 x^{2}+16}= \)
Q:
\( y ^ { \prime \prime } - y ^ { \prime } - 2 y = 3 e ^ { 2 x } - x ^ { 2 } \)
Q:
k. \( \lim _{x \rightarrow 5} \frac{x^{2}-25}{\sqrt{x^{2}+11}-6} \)
Q:
Encontrar Diy con teorencts de derricasias
\[ y=2 \operatorname{sen} x+3 \cos x \]
Q:
Question
Use the second derivative test to find the location of all local extrema in the interval \( \left(\frac{11}{8}, \frac{27}{8}\right) \) for the function given
below.
\[ f(x)=\frac{4 e^{4 x}}{4 x-5} \]
If there is more than one local maxima or local minima, write each value of \( x \) separated by a comma. If a local maxima or
local minima does not occur on the function, enter \( \varnothing \) in the appropriate box. Enter answer using exact value.
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit