Q:
Find \( \int\left(\frac{4}{x^{2}}+7 x+5\right) d x \)
\( \square+C \)
Q:
2.3 Differentiate \( \frac{5}{2} \operatorname{cosec}^{-1}\left(\frac{\theta}{2}\right) \) with respect to \( \theta \)
Q:
\( \int e ^ { x ^ { z 2 } } = \)
Q:
Find \( \int\left(3 x^{7}+5 x^{5}\right) d x \)
\( \square+C \)
Q:
Find \( \int\left(3 x^{7}+5 x^{5}\right) d x \)
Q:
Evaluate the integral \( \int \sin(5t) \cos(5t) \, dt \) by making an appropriate substitution.
Q:
\( \int _ { 0 } ^ { \frac { 1 } { 2 } } e ^ { x ^ { 2 } } = \)
Q:
Evalúa la integral \( \int \frac{x-1}{2 x+4} d x \)
Escoge 1 respuesta:
(A) \( \frac{1}{2} x-\frac{1}{2} \ln |x+2|+C \)
(3) \( \frac{1}{2} x-\ln |x+2|+C \)
\( \frac{1}{2} x-\frac{3}{2} \ln |x+2|+C \)
\( \frac{1}{2} x-2 \ln |x+2|+C \)
Q:
Si la siguiente serie geométrica infinita converge, encuentra su suma.
\( 1+\frac{3}{5}+\left(\frac{3}{5}\right)^{2}+\left(\frac{3}{5}\right)^{3} \ldots \)
1.5
2
25
2
Q:
\( y=\frac{\sin x}{2},-\pi \leq x \leq \pi \)
Use differentiation to determine the co-ordinates of the maximum and minimum
turning points. Also distinguish between the maximum and minimum turning points
of the given function by using the second derivative.
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit