Q:
QUESTION 7
7.1 An Ice-Cream fridge has 13 Chocolate flavoured ice-creams, 12 Cappuccino
flavoured ice-creams and \( x \) number of Orange flavoured ice-creams.
7.1.1 If there is a \( 50 \% \) of choosing an orange flavoured ice-cream, how many orange ice
-creams are in the fridge?
7.1.2 Determine the probability of choosing two of the same flavoured ice-cream one
after each other if the ice cream is not replaced. Give your answer rounded to 2
decimal places.
Q:
La razón entre canicas blancas y canicas negras en un jarro es de \( 2: 9 \).
Marcar todos los enunciados que deben ser ciertos basados en el enunciado anterior.
Sí ninguno de estos enunciados es cierto, marcar "Ninguno de los anteriores".
\begin{tabular}{|l|l|}\hline & Hay 2 canicas blancas por cada 9 canicas negras en el jarro. \\ \hline\( \square \) Hay 2 canicas blancas y 9 canicas negras en el jarro. \\ \hline\( \square \) Hay 2 canicas negras por cada 9 canicas blancas en el jarro. \\ \hline\( \square \) Por cada 9 canicas negras en el jarro, hay 2 canicas blancas. \\ \hline\( \square \) Ninguno de los anteriores \\ \hline\end{tabular}
Q:
Lamonte performs the experiment 34 times. The results are shown be
An apple chew was selected 13 times.
A lime chew was selected 15 times.
ped on these results, express the probability that the next chew Lamor a percent to the nearest whole number.
Q:
Based on these results, express the probability that an eighth grader chosen at random will play the drums
as a percent to the nearest whole number.
Q:
ased on these results, express the probability that the next chew Caleb removes from the bag will be
herry chew as a decimal to the nearest hundredth.
Q:
b. A dice was rolling and it sample is \( S=\{1,2,3,4,5,6\} \)
\( A=\{2,4,5\} \quad B=\{1,3,4,5,6\} \)
Find the probability of
i. \( P(A \cap B) \)
\( P( \) AnB \( )=\{4,5\} \)
ii. \( P(A \cup B) \)
\( P(A \cup B)=\{1,2,3,4,5,6\} \)
iii. \( P(A \) complement)
Q:
Question 1
0.19
a. \( A \) and \( B \) are events with \( P(A)=0.2, P(B)=0.16 \) and \( P(A \cap B)=0.04 \)
i. Calculate \( P(A \cup B) \)
Q:
4. (1.0 puntos) Un objeto con tres caras es lanzado repetidamente. La probabilidad de que se obtenga
la primera cara en el lanzamiento \( n \)-esimo es \( P(n)=\left(\frac{1}{3}\right)^{n} \), donde \( n \geq 1 \)
Q:
Wivw-awu,aleks.com
Introduction to the counting principle
The Taylor family is selecting a furniture set. A furniture set has a bed, a desk and a dresser. There are 5 beds, 1 desk,
different furniture sets could they select?
Q:
Introduction to the counting principle
Chau must choose a shirt and a pair of pants for today's outfit. He has 3 shirts and 3 pairs of pants to choose from. Ho
I
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit