girl-logo

Ask Questions

Trigonometry Questions & Answers

Q:
En un triángulo \( A B C \) recto en \( A \), donde \( a, * \) b y c son los lados del triángulo, calcular el valor de la siguiente expresión: \( E=\frac{(a-b)^{2}+4 a b \operatorname{sen}^{2}\left(\frac{C}{2}\right)}{(a+b)^{2}-2 b c \cot \left(\frac{C}{2}\right)} \) \( \left.\operatorname{sen}^{2}(C / 2)\right] /\left[(a+b)^{2}-2 b c^{\star} \cot (C / 2)\right] \)
Q:
45 La distanza \( A C \) di un punto \( A \) da un piano 7 cm . Un segmento \( A B \), obliquo rispetto a piano e con il punto \( B \) giacente nel piano stesso, misura \( 7 \sqrt{2} \mathrm{~cm} \). Quanto misura l'an- golo che il segmento \( A B \) forma con la sua proiezione sul piano? [45
Q:
embles) \( \begin{array}{l}\text { 6) On pose : } \\ A=\left\{\frac{\pi}{8}+\frac{k \pi}{2} / k \in \mathbb{Z}\right\}, B=\left\{-\frac{7 \pi}{8}+\frac{k \pi}{2} / k \in \mathbb{Z}\right. \\ \text { et } C=\left\{-\frac{3 \pi}{8}+k \pi / k \in \mathbb{Z}\right\} \\ \text { a) Montrer que } A=B \\ \text { b) } A \text {-t-on } B=C \text { ? }\end{array} \)
Q:
Sarrolla las operaciones y completa la \( 4 \tan ^{2} 45^{\circ} \div \operatorname{sen} 30^{\circ}=8 \) \( \tan ^{2} 60^{\circ} \times 2 \cot ^{2} 45^{\circ}=\square \) \( 2 \cos 60^{\circ}+2 \csc 30^{\circ}=\square \) \( 4 \cos ^{2} 30^{\circ}+\sec 60^{\circ}=\square \)
Q:
d) \( \begin{array}{l}\text { 9. Resolver el siguiente sistema de ecuaciones } \\ \text { lineales para } x e y . \\ (\cos \theta) x+(\operatorname{sen} \theta) y=1 \\ (-\operatorname{sen} \theta) x+(\cos \theta) y=0\end{array} \)
Q:
\( \begin{array}{ll}\text { а) } \operatorname{arctg} 1-\operatorname{arctg} \sqrt{3} ; & \text { б) } \operatorname{arctg} 1-\operatorname{arctg}(-1) \\ \text { в) } \operatorname{arctg}(-\sqrt{3})+\operatorname{arctg} 0 ; & \text { г) } \operatorname{arctg} \frac{1}{\sqrt{3}}+\operatorname{arctg} \sqrt{3}\end{array} \)
Q:
\( \begin{array}{ll}\text { а) } \operatorname{arctg} 1-\operatorname{arctg} \sqrt{3} ; & \text { б) } \operatorname{arctg} 1-\operatorname{arctg}(-1 \\ \text { в) } \operatorname{arctg}(-\sqrt{3})+\operatorname{arctg} 0 ; & \text { г) } \operatorname{arctg} \frac{1}{\sqrt{3}}+\operatorname{arctg} \sqrt{3}\end{array} \)
Q:
(2) \( y=\sqrt{\frac{1+\operatorname{sen}^{2}(x+2)}{\cos ^{2}(x+2)}} \quad \operatorname{Tan} \theta-\frac{\operatorname{sen} \theta}{\cos \theta}, \operatorname{Tan}^{2} \theta+1=\csc ^{2} \theta, \frac{d}{d x} \sec u=\sec u \cdot \operatorname{Tan} u \frac{d}{d x} u \)
Q:
2) Si \( \alpha \in \) IIIC, determine el signo de \( A=\frac{\operatorname{sen} \alpha}{\tan \alpha} y \mathrm{~B}=\frac{\cos \alpha}{\csc \alpha} \) \( \begin{array}{lll}\text { a) }(-),(-) & \text { b) }(+),(-) & \text { c) }(+),(+) \\ \text { d) }(-),(+) & \text { e) Sin signo }\end{array} \)
Q:
3) Determine el signo de \( \mathrm{A}=\operatorname{sen} 40^{\circ} \cdot \sec 130^{\circ} \cdot \tan 310^{\circ} \) yB \( =\frac{\cos 70^{\circ} \cdot \cot 250^{\circ}}{\csc 290^{\circ}} \) \( \begin{array}{lll}\text { a) }(-),(-) & \text { b) }(+),(-) & \text { c) }(-),(+) \\ \text { d) }(+),(+) & \text { e) Sin signo }\end{array} \)

Test your knowledge on Trigonometry!

Select the correct answer and check your answer

16 17 18 19 20 21 22 23 24 25
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions