girl-logo

Ask Questions

Trigonometry Questions & Answers

Q:
CIO 1 UNO DC lOS DE UN RECTANGIO MIDE \( 4,8 \mathrm{~cm} \), y el ANGUCO OUUESTO A ESE CATETO MIDE \( 54^{\circ} \). HALLA LA MEDIDA DCL RESTO DE CATETOS Y ANGULOS.
Q:
8. \( \tan ^{2} \alpha-\operatorname{sen}^{2} \alpha=\tan ^{2} \alpha \operatorname{sen}^{2} \alpha \)
Q:
7. \( \frac{1+\cos 3 t}{\operatorname{sen} 3 t}+\frac{\operatorname{sen} 3 t}{1+\cos 3 t}=2 \csc 3 t \)
Q:
6. \( (\tan u+\cot u)(\cos u+\operatorname{sen} u)=\csc u+\sec u \)
Q:
5. \( \frac{\csc ^{2} \theta}{1+\tan ^{2} \theta}=\cot ^{2} \theta \)
Q:
\( \frac { 1 + \sin 2 a + \cos 2 a } { 1 + \sin 2 a - \cos 2 a } = \cot a \)
Q:
What is the cosine for an angle that has a sine of \( \frac{4}{\sqrt{17}} \) and is in Quadrant I? Use the Pythagorean identity \( \sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \) and the quadrant to solve. (1 point) \[ \frac{1}{17} \] \[ \frac{1}{17} \]
Q:
What is the sine for an angle that has a cosine of \( -\frac{4}{7} \) and is in Quadrant II? Use the Pythagorean identity \( \sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \) and the quadrant to solve. (1 point) \( -\frac{\sqrt{33}}{7} \) - \( \frac{\sqrt{33}}{7} \) \( \frac{33}{49} \)
Q:
Using the Pythagorean Identity, determine \( \cos \theta \) if \( \sin \theta=-\frac{12}{17} \) and \( \pi<\theta<\frac{3 \pi}{2} \). (1 point) \( \begin{array}{l}\sqrt{\frac{29}{17}} \\ \frac{\sqrt{145}}{17} \\ -\frac{\sqrt{145}}{17} \\ -\sqrt{\frac{29}{17}}\end{array} \)
Q:
4. \( \tan t+2 \cos t \csc t=\sec t \csc t+\cot t \)

Test your knowledge on Trigonometry!

Select the correct answer and check your answer

20 21 22 23 24 25 26 27 28 29
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions