Q:
7. \( \frac{1+\cos 3 t}{\operatorname{sen} 3 t}+\frac{\operatorname{sen} 3 t}{1+\cos 3 t}=2 \csc 3 t \)
Q:
6. \( (\tan u+\cot u)(\cos u+\operatorname{sen} u)=\csc u+\sec u \)
Q:
5. \( \frac{\csc ^{2} \theta}{1+\tan ^{2} \theta}=\cot ^{2} \theta \)
Q:
\( \frac { 1 + \sin 2 a + \cos 2 a } { 1 + \sin 2 a - \cos 2 a } = \cot a \)
Q:
What is the cosine for an angle that has a sine of \( \frac{4}{\sqrt{17}} \) and is in Quadrant I? Use the
Pythagorean identity \( \sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \) and the quadrant to solve. (1 point)
\[ \frac{1}{17} \]
\[ \frac{1}{17} \]
Q:
What is the sine for an angle that has a cosine of \( -\frac{4}{7} \) and is in Quadrant II? Use the
Pythagorean identity \( \sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \) and the quadrant to solve. (1 point)
\( -\frac{\sqrt{33}}{7} \)
- \( \frac{\sqrt{33}}{7} \)
\( \frac{33}{49} \)
Q:
Using the Pythagorean Identity, determine \( \cos \theta \) if \( \sin \theta=-\frac{12}{17} \) and \( \pi<\theta<\frac{3 \pi}{2} \). (1 point)
\( \begin{array}{l}\sqrt{\frac{29}{17}} \\ \frac{\sqrt{145}}{17} \\ -\frac{\sqrt{145}}{17} \\ -\sqrt{\frac{29}{17}}\end{array} \)
Q:
4. \( \tan t+2 \cos t \csc t=\sec t \csc t+\cot t \)
Q:
In which quadrant would \( \theta \) be if \( \sin \theta=-\frac{\sqrt{3}}{2} \) and \( \cos \theta>0 \) ? (1 point)
Quadrant IV
Quadrant I
Quadrant II
Quadrant III
Q:
In which quadrant would \( \theta \) be if \( \tan \theta=\frac{\sqrt{3}}{3} \) and \( \cos \theta=-\frac{\sqrt{3}}{2} ? \) (1 point)
Quadrant II
Quadrant IV
Quadrant III
Quadrant I
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit