Q:
\( y = \frac { \operatorname { Tan } 2 x } { 1 - \operatorname { Cot } 2 x } \)
Q:
(1. Calcula las razones trigonométricas de los ángulos
agudos de los triángulos rectángulos \( A B C \) tales que:
a. \( m \propto A=90^{\circ}, b=10 \mathrm{~cm} \) y \( c=12 \mathrm{~cm} \)
Q:
Angle \( \theta \) is in standard position. If \( (8,-15) \) is on the terminal ray of angle \( \theta \), find the values of the
trigonometric functions.
\( \sin (\theta)= \)
\( \cos (\theta)= \)
\( \tan (\theta)= \)
\( \csc (\theta)= \)
Q:
Is the work shown in the simplification below
correct? Explain.
\[ \begin{aligned} \frac{\csc (t)}{\sec (t)} & =\frac{1}{\cos (t)} \div \frac{1}{\sin (t)} \\ & =\frac{1}{\cos (t)} \cdot \frac{\sin (t)}{1} \\ & =\frac{1}{\sin (t)} \\ & =\tan (t)\end{aligned} \]
Q:
Solving a Real-World Problem
A 26 -foot long ladder is leaning against a building
at a \( 60^{\circ} \) angle with the ground.
Which of the following equations can you use to
found to the ne approximate height of the building?
\( \csc \left(60^{\circ}\right)=\frac{26}{h} \)
\( \csc \left(60^{\circ}\right)=\frac{h}{26} \)
\( \sec \left(60^{\circ}\right)=\frac{26}{h} \)
\( \sec \left(60^{\circ}\right)=\frac{h}{26} \)
Q:
A 26 -foot long ladder is leaning against a building What is the approximate height of the building?
at a \( 60^{\circ} \) angle with the ground.
Which of the following equations can you use to
find the height of the building, \( h \) ?
Q:
A 26 -foot long ladder is leaning against a building
at a \( 60^{\circ} \) angle with the ground.
Which of the following equations can you use to
find the height of the building, \( h \) ?
\( \csc \left(60^{\circ}\right)=\frac{26}{h} \)
\( \csc \left(60^{\circ}\right)=\frac{h}{26} \)
\( \sec \left(60^{\circ}\right)=\frac{26}{h} \)
\( \sec \left(60^{\circ}\right)=\frac{h}{26} \)
Q:
Select all that are undefined.
\( \square \quad \csc (\pi) \)
\( \cot \left(\frac{\pi}{2}\right) \)
\( \square \cot (\pi) \)
\( \square \sec \left(45^{\circ}\right) \)
\( \square \csc \left(0^{\circ}\right) \)
\( \square \sec \left(90^{\circ}\right) \)
Q:
Find the exact value of \( \sec \left(-135^{\circ}\right) \).
\( \begin{array}{ll}-2 \\ -\sqrt{2} \\ & \sqrt{2} \\ 2\end{array} \)
Q:
Evaluate: \( \cot \left(\frac{\pi}{3}\right) \)
\( \begin{array}{ll}\frac{2 \sqrt{3}}{3} \\ 0 & \sqrt{2} \\ 0 & 2 \\ \frac{\sqrt{3}}{3}\end{array} \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit