girl-logo

Ask Questions

Trigonometry Questions & Answers

Q:
MATHEMATICS P2 QUESTION 6 6.1 Given that \( f(x)=-3 \sin x \) and \( g(x)=\cos x+1 \) where \( x \varepsilon\left[0^{\circ} ; 360^{\circ}\right] \) 6.1 .1 Write down the amplitude of \( f(x) \). 6.1 .2 What is the period of \( g(x) \).
Q:
(ECNOV 2024) QUESTION 6 \( \begin{array}{llll}6.1 & \text { Given that } f(x)=-3 \sin x \text { and } g(x)=\cos x+1 \text { where } x \varepsilon\left[0^{\circ} ; 360^{\circ}\right] \\ & 6.1 .1 \quad \text { Write down the amplitude of } f(x) .\end{array} \)
Q:
5.1 Determine the size of the following angles: 5.1.1 \( \quad \sin \beta+2=2.65 \) \( 5.1 .2 \quad \cos 2 \alpha=0.6 \)
Q:
9 Écrire le plus simplement possible: 1) \( \sin (\pi-x)-\cos \left(\frac{\pi}{2}+x\right) \) 2) \( \cos \left(x+\frac{21 \pi}{2}\right)+\cos \left(x-\frac{19 \pi}{2}\right) \)
Q:
B Calculer les valeurs exactes des cosinus, sinus et tangente des nombres revels suivants : \( \frac{25 \pi}{3} ;-\frac{97 \pi}{3} ; \frac{5 \pi}{6} ;-\frac{11 \pi}{4} ; \frac{109 \pi}{3} ; \frac{22 \pi}{3} \) 9 Ecrire le plus simplement possible: (1) \( \sin (\pi-x)-\cos \left(\frac{\pi}{2}+x\right) \) (2) \( \cos \left(x+\frac{21 \pi}{2}\right)+\cos \left(x-\frac{19 \pi}{2}\right) \). \( \quad 10 \) Ecrire plus simplement l'expression : \( \sin (\pi-x)+\cos (5 \pi+x)+\sin (4 \pi-x)+\cos (8 \pi+x) \) (1) \( \sin (x+\pi)+\cos (x-\pi)-\sin (x-2 \pi)+\cos (x+5 \pi) \) (2) \( \cos \left(\frac{\pi}{2}-x\right)-\sin \left(x+\frac{\pi}{2}\right)+\cos \left(\frac{7 \pi}{2}-x\right)-\sin \left(x+\frac{5 \pi}{2}\right) \) (3) \( \tan \left(\frac{\pi}{2}-x\right)+\frac{1}{\tan \left(x+\frac{\pi}{2}\right)}-\tan \left(\frac{7 \pi}{2}+x\right)-\frac{1}{\tan \left(\frac{7 \pi}{2}-x\right)} \) (4) \( \cos (\pi+x)+\cos (\pi-x)+\cos (-x) \) (5) \( \sin (\pi+x)+\sin (\pi-x)+\sin (-x) \) (6) \( \sin \left(x+\frac{\pi}{2}\right)+2 \sin \left(x+\frac{3 \pi}{2}\right)+\sin \left(x+\frac{5 \pi}{2}\right) \) (7) \( \sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{3 \pi}{2}-x\right)+\cos \left(x-\frac{\pi}{2}\right)+\cos \left(x-\frac{3 \pi}{2}\right) \)
Q:
Question 2 \( x=\frac{\pi}{4} \) is a solution to \( \cos (x)-\sin (x)=0 ? \) True False
Q:
Instructions Sketch 2 periods of each function. Label coordinates at key points. \( \begin{array}{l}\text { 1. } f(x)=3 \sin x \\ \begin{array}{ll}\text { 2. } f(x)=-4 \cos x \\ \text { 3. } f(x)=-2 \sin x+3 & \text { can also be written } f(x)=3-2 \sin x \\ \text { 4. } f(x)=\frac{1}{2} \cos x-2 \quad \text { can also be written } f(x)=-2+\frac{1}{2} \cos x\end{array}\end{array} \).
Q:
Cho \( \cos x=\frac{1}{2} \). Tính giá trị biểu thức \( P=3 \sin ^{2} x+4 \cos ^{2} x \) ?
Q:
5. \( \operatorname{sen} x \cdot \sec x=\tan x \)
Q:
5. \( \operatorname{sen} x \cdot \sec x=\tan x \)

Test your knowledge on Trigonometry!

Select the correct answer and check your answer

31 32 33 34 35 36 37 38 39 40
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions