girl-logo

Ask Questions

Trigonometry Questions & Answers

Q:
\( 2.1 .3 \frac{\tan n}{\sin \beta} \times \cos \theta \) 2.2 Los op vir \( x \) waar \( x \in\left(0^{\circ} ; 90^{\circ}\right] \), en laat jou antwoord na die naaste heelgetal: \( 2.2 .1 \cos x=\frac{\sqrt{2}}{2} \) \( 2.2 .2 \tan x-\left[\sin ^{2} x+\cos ^{2} x\right]=0 \)
Q:
At a certain point, the angle of elevation of the top ff the flagpole, which stands on the level ground, \( \mathrm{s} 35^{\circ} \). Seventy-five feet nearer the pole, the angle f elevation is \( 50^{\circ} \). The height of the pole is Blank feet. Write the answer to the nearest whole number with no unit.) 3lank 1 Add your answer
Q:
38. Um arco trigonométrico mede \( \alpha=\pi \) radianos, outro arco mede \( \beta=\frac{\pi}{4} \) radianos e um terceiro arco mede \( \gamma=\frac{5 \pi}{3} \) radianos. Dessa forma, podemos concluir que: A) \( \operatorname{sen} \beta<\operatorname{sen} \alpha<\operatorname{sen} \gamma \) B) \( \operatorname{sen} \gamma<\operatorname{sen} \beta<\operatorname{sen} \alpha \) C) \( \operatorname{sen} \beta<\operatorname{sen} \gamma<\operatorname{sen} \alpha \) D) \( \operatorname{sen} \alpha<\operatorname{sen} \beta<\operatorname{sen} \gamma \) E) \( \operatorname{sen} \gamma<\operatorname{sen} \alpha<\operatorname{sen} \beta \)
Q:
Si \( \cos \alpha=\frac{\sqrt{2}}{3} \), calcule \( \cos 3 \alpha \)
Q:
1. Si \( 2 \operatorname{sen} \alpha-1=0 \), calcule \( \operatorname{sen} 3 \alpha \)
Q:
- Si \( 3 \operatorname{sen} \alpha-1=0 \), calcule \( 27 \operatorname{sen} 3 \alpha \)
Q:
1. Hallar las restantes relaciones trigonométricas si se conoce que: \( \operatorname{Cos} \alpha=\sqrt{3} / 2 \), y \( 270^{\circ}<\alpha<360^{\circ} \)
Q:
\( \begin{array}{l}\text { MathJax Zoomed Expression } \\ -3 \tan \left(x+\cos \left(\frac{x}{4}\right)\right. \\ -\frac{1}{2} \cos \left(\frac{5 x}{6}+\pi\right)\end{array} \quad y=-\frac{1}{3} \sin \left(\frac{x}{3}\right) \)
Q:
Si \( \cos \beta=\frac{\sqrt{35}}{6} ; 0^{\circ}<\beta<90^{\circ} \), calcula el valor de \( \cos \frac{\mathrm{D}}{2} \) \( \begin{array}{lll}\text { A) } \sqrt{\frac{5+\sqrt{35}}{10}} & \text { B) } \sqrt{\frac{6+\sqrt{35}}{12}} & \text { C) } \sqrt{\frac{12+\sqrt{35}}{6}} \\ \text { D) } \sqrt{\frac{12+\sqrt{35}}{6}} & \text { E) } \sqrt{\frac{12-\sqrt{35}}{12}}\end{array} \)
Q:
4) In \( \triangle A B C \) if \( \sin A: \sin B: \sin C=3: 4: 2 \), then \( m(\angle C)= \) nearest degre \( \begin{array}{llll}\text { (a) } 29 & \text { (b) } 57 & \text { (c) } 82 & \text { (d) } 89\end{array} \) circumcircle \( =5 \mathrm{~cm} \), then the area of triangle \( =\ldots \) \( \begin{array}{llll}\text { (a) } 9 & \text { (b) } 12 & \text { (c) } 31 & \text { nearest } \mathrm{cm}^{3}\end{array} \)

Test your knowledge on Trigonometry!

Select the correct answer and check your answer

41 42 43 44 45 46 47 48 49 50
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions