Q:
\( 2.1 .3 \frac{\tan n}{\sin \beta} \times \cos \theta \)
2.2 Los op vir \( x \) waar \( x \in\left(0^{\circ} ; 90^{\circ}\right] \), en laat jou antwoord na die naaste
heelgetal:
\( 2.2 .1 \cos x=\frac{\sqrt{2}}{2} \)
\( 2.2 .2 \tan x-\left[\sin ^{2} x+\cos ^{2} x\right]=0 \)
Q:
At a certain point, the angle of elevation of the top
ff the flagpole, which stands on the level ground,
\( \mathrm{s} 35^{\circ} \). Seventy-five feet nearer the pole, the angle
f elevation is \( 50^{\circ} \). The height of the pole is Blank
feet.
Write the answer to the nearest whole number
with no unit.)
3lank 1 Add your answer
Q:
38. Um arco trigonométrico mede \( \alpha=\pi \) radianos, outro
arco mede \( \beta=\frac{\pi}{4} \) radianos e um terceiro arco mede
\( \gamma=\frac{5 \pi}{3} \) radianos.
Dessa forma, podemos concluir que:
A) \( \operatorname{sen} \beta<\operatorname{sen} \alpha<\operatorname{sen} \gamma \)
B) \( \operatorname{sen} \gamma<\operatorname{sen} \beta<\operatorname{sen} \alpha \)
C) \( \operatorname{sen} \beta<\operatorname{sen} \gamma<\operatorname{sen} \alpha \)
D) \( \operatorname{sen} \alpha<\operatorname{sen} \beta<\operatorname{sen} \gamma \)
E) \( \operatorname{sen} \gamma<\operatorname{sen} \alpha<\operatorname{sen} \beta \)
Q:
Si \( \cos \alpha=\frac{\sqrt{2}}{3} \), calcule \( \cos 3 \alpha \)
Q:
1. Si \( 2 \operatorname{sen} \alpha-1=0 \), calcule \( \operatorname{sen} 3 \alpha \)
Q:
- Si \( 3 \operatorname{sen} \alpha-1=0 \), calcule \( 27 \operatorname{sen} 3 \alpha \)
Q:
1. Hallar las restantes relaciones trigonométricas
si se conoce que:
\( \operatorname{Cos} \alpha=\sqrt{3} / 2 \), y \( 270^{\circ}<\alpha<360^{\circ} \)
Q:
\( \begin{array}{l}\text { MathJax Zoomed Expression } \\ -3 \tan \left(x+\cos \left(\frac{x}{4}\right)\right. \\ -\frac{1}{2} \cos \left(\frac{5 x}{6}+\pi\right)\end{array} \quad y=-\frac{1}{3} \sin \left(\frac{x}{3}\right) \)
Q:
Si \( \cos \beta=\frac{\sqrt{35}}{6} ; 0^{\circ}<\beta<90^{\circ} \), calcula el valor de \( \cos \frac{\mathrm{D}}{2} \)
\( \begin{array}{lll}\text { A) } \sqrt{\frac{5+\sqrt{35}}{10}} & \text { B) } \sqrt{\frac{6+\sqrt{35}}{12}} & \text { C) } \sqrt{\frac{12+\sqrt{35}}{6}} \\ \text { D) } \sqrt{\frac{12+\sqrt{35}}{6}} & \text { E) } \sqrt{\frac{12-\sqrt{35}}{12}}\end{array} \)
Q:
4) In \( \triangle A B C \) if \( \sin A: \sin B: \sin C=3: 4: 2 \), then \( m(\angle C)= \) nearest degre
\( \begin{array}{llll}\text { (a) } 29 & \text { (b) } 57 & \text { (c) } 82 & \text { (d) } 89\end{array} \)
circumcircle \( =5 \mathrm{~cm} \), then the area of triangle \( =\ldots \)
\( \begin{array}{llll}\text { (a) } 9 & \text { (b) } 12 & \text { (c) } 31 & \text { nearest } \mathrm{cm}^{3}\end{array} \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit