girl-logo

Ask Questions

Trigonometry Questions & Answers

Q:
En cierta clase de matemáticas un estudiante no comprende muy bien un ejercicio, entonces amable- mente le pregunta a su compañero de carpeta, por lo tanto, ambos se embarcan en la solución del pro- blema, el cual decía: Si sen \( 3 \alpha=1 \) y sen \( 3 \beta=-1 \) donde \( 3 \alpha \) y \( 3 \beta \) son ángulos cuadrantales (positivos) y menores que una vuelta, determine: \( \begin{array}{ll}\text { A) } 140^{\circ} & \alpha+\beta \\ \text { C) } 130^{\circ} & \text { B) } 120^{\circ}\end{array} \)
Q:
\( \frac{1}{\csc \theta}=\frac{1}{\sec \theta}=\square \), and \( \frac{1}{\cot \theta}=\square \)
Q:
2. Si \( \theta=10^{\circ} \), halle el valor de \[ R=2 \operatorname{sen} 27 \theta-\cos 18 \theta-\sec 36 \theta \] \( \begin{array}{ll}\text { A) }-2 & \text { B) }-1 \\ \text { C) } 0 & \text { D) } 1\end{array} \)
Q:
1. Halle el valor de \[ \mathrm{P}=\frac{\tan 0^{\circ}-\csc 270^{\circ}}{\cos 90^{\circ}-\sec 180^{\circ}} \] \( \begin{array}{ll}\text { A) } 2 & \text { B) }-1 \\ \text { C) }-2 & \text { D) } 1\end{array} \)
Q:
Question: a. Solve \( 2 \cos \theta=-\sqrt{2} \) on \( [0,2 \pi) \) b. Solve \( \tan \theta=\sqrt{3} \) on \( [0,2 \pi) \)
Q:
Question: a. Solve \( 2 \cos \theta=-\sqrt{2} \) on \( [0,2 \pi) \) b. Solve \( \tan \theta=\sqrt{3} \) on \( [0,2 \pi) \)
Q:
If \( \csc \theta=\frac{\sqrt{125}}{10} \), what is \( \tan \theta ? \)
Q:
2. Solve \( 2 \sin \theta+\sqrt{3}=0 \). Give general formula for all solutions. List 8 solutions.
Q:
1. Solve \( \cos \theta=\frac{1}{2} \) Give general formula for all solutions.
Q:
1. Solve \( \cos \theta=\frac{1}{2} \) Give general formula for all solutions.

Test your knowledge on Trigonometry!

Select the correct answer and check your answer

10 11 12 13 14 15 16 17 18 19
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions