Math Questions from Dec 20,2024

Browse the Math Q&A Archive for Dec 20,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Solve, finding all solutions in \( [0,2 \pi) \) or \( \left[0^{\circ}, 360^{\circ}\right) \). \( 2 \boldsymbol{s i n}^{2} x+\sqrt{2} \sin x=0 \) The solution(s) in \( \left[0^{\circ}, 360^{\circ}\right) \) is/are \( x=\square \). (Type your answer in degrees. Do not include the degree symbol in your answer. Use a comma to separate answers as needed.) The solution(s) in \( [0,2 \pi) \) is/are \( x=\square \). (Simplify your answer. Type an exact answer, using \( \pi \) as needed. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.). Solve, finding all solutions in \( [0,2 \pi) \) or \( \left[0^{\circ}, 360^{\circ}\right) \). \( -\boldsymbol{\operatorname { s i n }} 2 \mathrm{x} \boldsymbol{\operatorname { s i n }} \mathrm{x}+\boldsymbol{\operatorname { c o s } x}=0 \) The solution(s) in \( \left[0^{\circ}, 360^{\circ}\right) \) is/are \( x=\square \). (Type your answer in degrees. Do not include the degree symbol in your answer. Use a comma to separate answers as needed.) The solution(s) in \( [0,2 \pi) \) is/are \( x=\square \). (Simplify your answer. Type an exact answer, using \( \pi \) as needed. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) Rewrite \( \frac{1}{\sqrt[4]{y}} \) using rational exponents. Sossible \( 4 \cos ^{2} x=3 \) The solution(s) in \( \left[0^{\circ}, 360^{\circ}\right) \) is/are \( x=\square \). (Type your answer in degrees. Do not include the degree symbol in your answer. Use a comma to separate answers as needed.) The solution(s) in \( [0,2 \pi) \) is/are \( x=\square \) (Simplify your answer. Type an exact answer, using \( \pi \) as needed. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) Solve, finding all solutions in \( [0,2 \pi) \) or \( \left[0^{\circ}, 360^{\circ}\right) \). \( 4 \cos ^{2} x=3 \) The solution(s) in \( \left[0^{\circ}, 360^{\circ}\right) \) is/are \( x=\square \). (Type your answer in degrees. Do not include the degree symbol in your answer. Use a comma to separate answers as needed.) The solution(s) in \( [0,2 \pi) \) is/are \( x=\square \) (Simplify your answer. Type an exact answer, using \( \pi \) as néeded. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) What is the formula for calculating the surface area of a rectangular prism? 11. Si \( x \) y y son enteros positivos, encuentra los valores que satisfagan siguiente ecuación \( x^{2}-9 y^{2}=43 \). Determine if the functions \( f(x) = 3x + 1 \) and \( g(x) = \frac{x - 1}{3} \) are inverse functions. Describe the steps involved in finding the inverse of a function algebraically. Hallar las trayectorias ortogonales de la familia de parábolas con eje de simetría vertical que pasan por el vértice \( (-4,3) \). a. Escriba la ecuación de la familia de cruvas \( F(x, y, u)=0 \) ( \( u \) es la constante que genera la familia de cruvas). b. Escriba la ecuación diferencial de la familia de curvas, \( \frac{d y}{d x}=f(x, y) \) c. Escriba la EDO que representa la pendiente ortogonal de la familia de curvas dada \( \frac{d y}{d x}=g(x, y) \). d. Escriba la ecuación que representa la trayectoria ortogonal \( G(x, y, v)=0 \) (coloque \( v \) como la constante de integración obtenida al resolver la EDO) -
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy