Calculus Questions from Nov 01,2024

Browse the Calculus Q&A Archive for Nov 01,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
2. \( \lim _{x \rightarrow \infty} \frac{x^{2}}{5-x^{3}} \) Soient \( f \) et \( g \) deux applications tel que: \[ f: \mathbb{R} \rightarrow \mathbb{R} \quad ; \quad g:[1 ;+\infty[\rightarrow[2 ;+\infty[ \] \[ x \mapsto f(x)=x^{2}+x+2 \quad ; \quad \mathbf{x} \mapsto g(x)=x+\frac{1}{x} \] 1) a) Montrer que : \( (\forall x \in \mathbb{R}) ; f(-1-x)=f(x) ; \) b) En déduire que l'application \( f \) n'est pas injective. 2) Résoudre dans \( \mathbb{R} \) l'équation : \( f(x)=-\frac{1}{4} \), et déduire que \( f \) n'est pas surjective 3) Montrer que : \( f(\mathbb{R})=\left[\frac{7}{4} ;+\infty[ \right. \) 4) Montrer que \( g \) est une bijection et déterminer sa bijection réciproque. Soient \( f \) et \( g \) deux applications tel que: \[ f: \mathbb{R} \rightarrow \mathbb{R} \quad ; \quad g:[1 ;+\infty[\rightarrow[2 ;+\infty[ \] \[ x \mapsto f(x)=x^{2}+x+2 \quad ; \quad \mathbf{x} \mapsto g(x)=x+\frac{1}{x} \] 1) a) Montrer que : \( (\forall x \in \mathbb{R}) ; f(-1-x)=f(x) ; \) b) En déduire que l'application \( f \) n'est pas injective. 2) Résoudre dans \( \mathbb{R} \) l'équation : \( f(x)=-\frac{1}{4} \), et déduire que \( f \) n'est pas surjective 3) Montrer que : \( f(\mathbb{R})=\left[\frac{7}{4} ;+\infty[ \right. \) 4) Montrer que \( g \) est une bijection et déterminer sa bijection réciproque. RESUELVE LOS SIGUIENTES LIMITES 1. \( \lim _{x \rightarrow \infty} \frac{x}{x-5} \) Se quiere construir un silo (sin incluir la base) en forma de cilin- dro rematado por una semiesfera. El costo de construcción por unidad cuadrada del área superficial es dos veces mayor para la semiesfera que para la pared cilíndrica. Determine las dimensio- nes que se deben usar si el volumen es fijo y el costo de construc- ción debe mantenerse al mínimo. Desprecie el espesor del silo y los desperdicios en la construcción. A conical tank (with vertex down) is 28 ft across the top and 7 ft ft deep. If water is flowing into the tank at the rate of \( 9 \mathrm{ft}^{3} / \mathrm{sec} \), find the rate of change of the depth of the water at the instant when it is 2 \( f t \) deep. Evaluate each of the following limits. If you need to use \( \infty \) or \( -\infty \), enter INFINITY or -INFINITY, respectively. (a) \( \lim _{x \rightarrow-\infty} e^{-x^{5}}=\square \) (b) \( \lim _{x \rightarrow \infty} e^{-x^{7}}=\square \) (c) \( \lim _{x \rightarrow 0^{+}} e^{3 / x}=\square \) (d) \( \lim _{x \rightarrow 0^{-}} e^{2 / x}=\square \) (e) \( \lim _{x \rightarrow \infty} e^{9 / x}=\square \) TAREA \#5, Corte 2 Tema: Integrales dobles 1. Calcular el área determinada por el par de curvas y realizar la gráfica en cada caso. a) \( y=x^{2} ; x+y=2 \) b) \( y=\sin x ; y=\cos x \) en el primer cuadrante c) \( y=\frac{x}{2} ; y=\sqrt{x} \) 5 In this question you must show detailed reasoning. Fig. 12 shows part of the graph of \( y=x^{2}+\frac{1}{x^{2}} \). The tangent to the curve \( y=x^{2}+\frac{1}{x^{2}} \) at the point \( \left(2, \frac{17}{4}\right) \) meets the \( x \)-axis at A and meets the \( y \)-axis at B . Ois the origin. Find the exact area of the triangle OAB . 5 In this question you must show detalled reasoning. Fig. 12 shows part of the graph of \( y=x^{2}+\frac{1}{x^{2}} \). The tangent to the curve \( y=x^{2}+\frac{1}{x^{2}} \) at the point \( \left(2, \frac{17}{4}\right) \) meets the \( x \)-axis at \( A \) and meets the \( y \)-axis at \( B \). O the origin. Find the exact area of the triangle OAB.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy