Calculus Questions from Nov 26,2024

Browse the Calculus Q&A Archive for Nov 26,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
What are the horizontal and vertical asymptotes of the function \( f(x)=\frac{1}{x}+7 \) ? Horizontal: Vertical: Paso 2. Calcular la pendiente \( F^{\prime}(x)=-\mathrm{m} \) What are the horizontal and vertical asymptotes of the function \( f(x)=\frac{1}{x}-5 \) ? Horizontal: Vertical: Determinar la longitud de arco de la hélice circular con función vectorial \( r(t)=\cos (t) i+\operatorname{sen}(t) j+t k \) del punto \( (1,0,0) \) al punto \( (1,0,2 \pi) \) Calculé la siguiente integral por partes \( \int x \ln (x) d x \) (A) \( \frac{x^{2}}{2} \ln (x)-\frac{1}{4} x^{2}+C \) (B) \( 2 \frac{x^{2}}{3} \ln (x)-\frac{3}{4} x^{3}+C \) (C) \( \frac{x^{2}}{2} \ln (x)+\frac{1}{8} x^{2}+C \) (D) \( \frac{x}{2} \ln (x)-\frac{1}{3} x^{3}+C \) Calcule la siguiente integral por partes \( \int x \ln (x) d x \) (A) \( \frac{x^{2}}{2} \ln (x)-\frac{1}{4} x^{2}+C \) (B) \( 2 \frac{x^{2}}{3} \ln (x)-\frac{3}{4} x^{3}+C \) (C) \( \frac{x^{2}}{2} \ln (x)+\frac{1}{8} x^{2}+C \) (D) \( \frac{x}{2} \ln (x)-\frac{1}{3} x^{3}+C \) 1) Calcular los máximos y mínimos, así como los puntos de inflexión de la función definida como \( f(x)=x^{3}-3 x+2 \) y trazar su gráfica. \( \begin{array}{l}x=16 \cos t, y=1 \sin t, t=-\frac{-}{4} \\ \text { Find } \frac{d y}{d x} \\ \frac{d y}{d x}=\frac{4 \cos t}{-16 \sin t} \\ \text { Find the slope of the tangent line at } t=-\frac{\pi}{4} \text {. } \\ \text { The slope is } \frac{1}{4} \text {. } \\ \text { The equation } \square \text { represents the line tangent to the curve at } t=-\frac{\pi}{4} \text {. } \\ \text { (Type an exact answer, using radicals as needed.) }\end{array} \). Find an equation for the line tangent to the curve at the point defined by the given value of \( t \) Also, find the value of \( \frac{d^{2} y}{d x^{2}} \) at this point. \( x=16 \cos t, y=4 \sin t, t=-\frac{\pi}{4} \) \( \frac{d y}{d x}=\frac{d y}{d x} \). \( 16 \sin t \) Find the slope of the tangent line at \( t=-\frac{\pi}{4} \) The slope is \( \operatorname { Lim } \frac { \sqrt { x ^ { 2 } + 9 } } { x } \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy