Pre-calculus Questions from Dec 14,2024

Browse the Pre-calculus Q&A Archive for Dec 14,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
El número de manzanas que produce cada árbol en una huerta depende de la densidad de árboles plantados. Si se plantan \( n \) árboles en un terreno determinado, entonces cada árbol produce \( 900-9 n \) manzanas. a) ¿Cuántos árboles deben plantarse en el terreno para obtener una producción máxima de manzanas? b) ¿Cuál es la cantidad máxima de manzanas que pueden producirse? Find the indicated power using de Moivre's Theorem. (Express your fully simplified answer in the form \( a+b i \).) \[ (3+\sqrt{3} i)^{4} \] 1 Find the product \( z_{1} z_{2} \) and the quotient \( \frac{z_{1}}{z_{2}} \). Express your answers in polar form. \[ z_{1}=\sqrt{5}\left(\cos \left(\frac{5 \pi}{3}\right)+i \sin \left(\frac{5 \pi}{3}\right)\right), \quad z_{2}=8 \sqrt{5}\left(\cos \left(\frac{3 \pi}{2}\right)+i \sin \left(\frac{3 \pi}{2}\right)\right) \] \( z_{1} z_{2}=\square \) \( \frac{z_{1}}{z_{2}}=\square \) Check your radius. Check your radius. Find the product \( z_{1} z_{2} \) and the quotient \( \frac{z_{1}}{z_{2}} \). Express your answers in polar form. \[ z_{1}=\frac{8}{9}\left(\cos \left(40^{\circ}\right)+i \sin \left(40^{\circ}\right)\right), \quad z_{2}=\frac{1}{9}\left(\cos \left(160^{\circ}\right)+i \sin \left(160^{\circ}\right)\right) \] \( z_{1} z_{2}=\square \) \( \frac{z_{1}}{z_{2}}=\square \) A mente Determina il dominio delle seguenti funzioni. Deco \( y=2 x^{3}-\frac{1}{2} x+1 \) What is the value of \( e^{\ln 7 x} \) ? 1 \( 7 e \) \( 7 x \) 7 0 What is the domain of the function \( y=\ln \left(\frac{-x+3}{2}\right) \) ? \( \begin{array}{l}x<2 \\ x>2 \\ x<3 \\ x>3\end{array} \) \begin{tabular}{l} Exercice 2 \\ \hline Soit \( f \) la fonction numérique définie par \\ \( f(x)=|x-1|+|x+1| \) \\ 1) Etudier la parité de la fonction \( f \) \\ 2) Vérifier que \( \forall x \in \mathbb{R} f(x) \geq 2 \) \\ 3) Résoudre l'équation \( f(x)=2 \) et déduire une valeur \\ minimale de la fonction \( f \) sur \( \mathbb{R} \)\end{tabular} \begin{tabular}{l} Exercice 2 \\ \hline Soit \( f \) la fonction numérique définie par \\ \( f(x)=|x-1|+|x+1| \) \\ 1) Etudier la parité de la fonction \( f \) \\ 2) Vérifier que \( \forall x \in \mathbb{R} f(x) \geq 2 \) \\ 3) Résoudre l'équation \( f(x)=2 \) et déduire une valeur \\ minimale de la fonction \( f \) sur \( \mathbb{R} \)\end{tabular} 8. \( \operatorname{Graph} g(x)=f(x-2)+1 \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy