Trigonometry Questions from Nov 14,2024

Browse the Trigonometry Q&A Archive for Nov 14,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
3. Prove each co-function identity using the compound angle identities. (a) \( \tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta \) (b) \( \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \) (c) \( \csc \left(\frac{\pi}{2}-\theta\right)=\sec \theta \) 4. Given that \( \sin x=\frac{3}{5} \) and that \( 0<x<\frac{\pi}{2} \), find the exact values of: (1) Halla, en cada caso, el valor de las funciones trigo- nométricas a partir de \( P(x, y) \). \( \begin{array}{ll}\text { a. }\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right) & \text { b. }\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \\ \text { c. }\left(\frac{2}{3},-\frac{\sqrt{5}}{3}\right) & \text { d. }\left(\frac{3}{5}, \frac{4}{5}\right)\end{array} \) 2. Sketch a standard position angle with each radian measure. \( \begin{array}{lll}\text { a. } \frac{5 \pi}{4} & \text { b. }-\pi \\ \text { c. } \frac{-4 \pi}{3} & \text { d. } \frac{15 \pi}{4}\end{array} \) Convert to degrees, minutes, and seconds (DMS). \( \begin{array}{lll}\text { 3. }-2.87^{\circ} & \text { 4. } 110.51^{\circ} & \text { 5. } 48.362^{\circ}\end{array} \) Convert to decimal degrees (DD). \( \begin{array}{lll}\text { 6. }-58^{\circ} 54^{\prime} & \text { 7. } 98^{\circ} 45^{\prime} 43.2^{\prime \prime} & \text { 8. } 135^{\circ} 35^{\prime} 38.4^{\prime \prime}\end{array} \) En los ejercicios 1 a 5 encuentre las soluciones de la ecuación en el intervalo \( 0^{\circ} \leq \theta \leq 360^{\circ} \) 1. \( \operatorname{sen} \theta=\frac{\sqrt{3}}{2} \) 2. \( \cos \theta-1=0 \) 3. \( \tan \theta+\sqrt{3}=0 \) 4. \( \sec \theta-\sqrt{2}=0 \) 5. \( \cot \theta=-1 \) \( \begin{array}{ll}\text { IDENTIDADES TRIGONOMÉTRICAS } & \text { 8. }(\operatorname{sen} v+\cos v)^{2}+(\operatorname{sen} v-\cos v)^{2}=2 \\ \text { Demostrar las siguientes identidades } & \text { 9. }(\operatorname{sen} v+\operatorname{cosec} v)^{2}=\operatorname{sen}^{2} v+\operatorname{cotan}^{2} v+3 \\ \text { 1. } \cos v \tan v=\operatorname{sen} v & \text { 10. } \sec ^{2} v-\sec ^{2} v=\tan ^{4} v-\tan ^{2} v \\ \text { 2. } \cot v \cdot \tan v=1 & \text { 11. }(\sec v+\cos v)(\sec v-\cos v)=\tan ^{2} v+\operatorname{sen}^{2} v \\ \text { 3. } \operatorname{sen} v \cot v+\cos v \tan v=\operatorname{sen} v+\cos v & \text { 12. }\left(1+\tan ^{2} v\right) \cos ^{2} v=1 \\ \text { 4. } \operatorname{sen} v \sec v=\tan v & \text { 13. } \operatorname{sen}^{2} v+\operatorname{sen}^{2} v \tan ^{2} v=\tan ^{2} v\end{array} \) 14. \( \tan v+\operatorname{cotan} v=\sec v \operatorname{cosec} v \) 15. \( \operatorname{sen}^{2} v \cos ^{2} v+\cos ^{4} v=\cos ^{2} v \) \( \begin{aligned} \text { a) } \quad \sin x & =0 \\ 0 & \leqslant x \\ 0 & \leqslant x \\ 0 & \leqslant 360^{\circ}\end{aligned} \) 5. \( \operatorname{sen} v \operatorname{cotan} v=\cos v \) 6. \( \operatorname{sen} v \tan v+\cos v=\sec v \) 7. \( \operatorname{csec} v-\operatorname{sen} v=\operatorname{cotan} v \cos v \) 8. \( (\operatorname{sen} v+\cos v)^{2}+(\operatorname{sen} v-\cos v)^{2}=2 \) 9. \( (\operatorname{sen} v+\operatorname{cosec} v)^{2}=\operatorname{sen}^{2} v+\operatorname{cotan}^{2} v+3 \) 10. \( \sec ^{4} v-\sec ^{2} v=\tan ^{4} v-\tan ^{2} v \) 11. \( \left(\sec ^{2} v+\cos ^{2} v\right)\left(\sec v-\cos ^{2} v\right)=\tan ^{2} v+\operatorname{sen}^{2} v \) 12. \( \left(1+\tan ^{2} v\right) \cos ^{2} v=1 \) Sin utilizar tablas ni calculadora, calcula y simplifica: a) \( 3 \operatorname{sen} 30^{\circ}+6 \cos 45^{\circ} \) b) \( \operatorname{sen}^{2} 45^{\circ}+\cos ^{2} 45^{\circ} \) c) \( \tan ^{2} 60^{\circ}-\sec ^{2} 60^{\circ} \) d) \( \frac{\cos 60^{\circ}+\cos 30^{\circ}}{\csc ^{2} 30^{\circ}+\operatorname{sen}^{2} 45^{\circ}} \) Sin utilizar tablas ni calculadora, calcula y simplifica: a) \( 3 \operatorname{sen} 30^{\circ}+6 \cos 45^{\circ} \) b) \( \operatorname{sen}^{2} 45^{\circ}+\cos ^{2} 45^{\circ} \) c) \( \tan ^{2} 60^{\circ}-\sec ^{2} 60^{\circ} \) d) \( \frac{\cos 60^{\circ}+\cos 30^{\circ}}{\csc ^{2} 30^{\circ}+\operatorname{sen}^{2} 45^{\circ}} \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy