Trigonometry Questions from Jan 01,2025

Browse the Trigonometry Q&A Archive for Jan 01,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
8. ¿A qué distancia de la base de un faro de 6 m se encuentra un barco cuando este se observa desde la parte superior del faro con un ángulo de depresión \( x \) tal que sen \( x-\sqrt{3} \cos x=0 \) ? \( \begin{array}{llll}\text { A) } \sqrt{3} & \text { B) } 3 \sqrt{3} & \text { C) } 6 \sqrt{3} & \text { D) } 2 \sqrt{3}\end{array} \) \( \left\{\begin{array}{ll}7 & \text { Simplifier : } \\ \boldsymbol{a}= & \cos 40^{\circ}-3 \sin 70^{\circ}-\sin 50^{\circ}+3 \cos 20^{\circ} \\ b= & \sqrt{3} \cos ^{2} 36^{\circ}-\sqrt{3} \tan 66^{\circ} \times \tan 24^{\circ}+\frac{\sqrt{12}}{2} \cos ^{2} 54^{\circ}\end{array}\right. \) A right triangle has an angle measuring 60 degrees and its hypotenuse measures 10 cm. Find the measure of the side opposite to the 60-degree angle. Solving Trig Equations Solve the following trig equations. \( \begin{array}{ll}\text { 48. } \frac{1}{2} \cos x=-\frac{\sqrt{2}}{4} & \text { 49. }-5-\frac{1}{5} \tan x=-5\end{array} \) Proving Trig Identities Prove the following using trigonometric identities. \( \begin{array}{ll}\text { 44. } \frac{\tan ^{2} x}{\sin ^{2} x}=\frac{1}{\cos ^{2} x} & \text { 45. } \sec ^{2} x+\csc ^{2} x=\frac{\csc ^{2} x}{\cos ^{2} x}\end{array} \) \( \begin{array}{ll}\text { 46. } \cot ^{2} x-\cot ^{2} x \cos ^{2} x=\sec ^{2} x & \text { 47. } 2-\frac{\cos ^{2} x}{1-\sin ^{2} x}=1\end{array} \) Proving Trig Identities Prove the following using trigonometric identities. \( \begin{array}{lll}\text { 44. } \frac{\tan ^{2} x}{\sin ^{2} x}=\frac{1}{\cos ^{2} x} & \text { 45. } \sec ^{2} x+\csc ^{2} x=\frac{\csc ^{2} x}{\cos ^{2} x}\end{array} \) 3. La distancia de una persona a la base de un edificio es de 13 m . En un momento, una persona observa la parte más alta con un ángulo de elevación de \( 30^{\circ} \), después, la persona dice que camina hacía el edificio, tal que ahora ve la parte alta del edificio con un ángulo de elevación \( x \) tal que \( \cos \left(30^{\circ}+\boldsymbol{x}\right) \) - sen \( x=0 \). ¿Cuántos metros se movió la persona? \( \begin{array}{llll}\text { Al } \frac{13}{\sqrt{3}} \text { metro } & \text { B) } 1 \text { metro } & \text { C) } 0 \text { metros } & \text { D) } 13 \sqrt{3} \text { metros }\end{array} \) Simplifying Trig Identities Simplify the following using trig identities. 40. \( \tan ^{2} x \csc ^{2} x \) 41. \( \sec x-\sin x \tan x \) 42. \( \cos x(1+\sec x)(1-\cos x) \) 43. \( \sin ^{2} x+\cot ^{2} x \sin ^{2} x \) Simplifying Trig Identities Simplify the following using trig identities. \( \begin{array}{ll}\text { 40. } \tan ^{2} x \csc ^{2} x & \text { 41. } \sec x-\sin x \tan x\end{array} \) What is the definition of the cosine function in relation to a right triangle using the adjacent side and hypotenuse?
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy