Other Questions from Jan 07,2025

Browse the Other Q&A Archive for Jan 07,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
12. Find the square roots of the complex number \( 3-4 i \), leaving your answer in rectangular form 11. Find the square roots of the complex number \( 2+2 \sqrt{3} i \), leaving your answer in rectangular form. (Hint: Solve \( z^{2}=2+2 \sqrt{3} i \), where \( z=a+b i \) and \( a \) and \( b \) are real numbers.) \( \begin{array}{l}\text { Direction: Identify the following question. Write your answer on your notebook. } \\ (1-6) \\ \text { 1. Defined as an arrangement to have something (room, table or } \\ \text { seat) held for your use at a later time. } \\ \text { 2. Also known as 'kitchen less kitchen'. } \\ \text { 3. A growing trend in reserving a seat in a restaurant. } \\ \text { 4. This system is usually used in cafeteria, restaurants, small } \\ \text { hospital and school canteens. } \\ \text { 5. Use of the internet through a website, where all the necessary } \\ \text { information needed for a reservation. } \\ \text { 6. This kind of system food is prepared in one place then } \\ \text { transported to satellite kitchens. }\end{array} \) Suppose the firm uses two inputs to produce its output: capital (K) and labor (L). The firm's production function is \( q=L^{1 / 2} K^{1 / 3} \). Suppose that in the short run capital (K) is fixed at 27. If the wage is \( \$ 4.5 \) and the rental rate on capital is \( \$ 4 \), 1. Does the production function display decreasing, constant, or increasing returns to scale? Explain 2. What is the short run total cost equation (function with \( q \) )? 3. What is the level of output (q) that minimizes the total cost? Suppose the firm uses two inputs to produce its output: capital (K) and labor (L). The firm's production function is \( q=L^{1 / 2} K^{1 / 3} \). Suppose that in the short run capital (K) is fixed at 27. If the wage is \( \$ 4.5 \) and the rental rate on capital is \( \$ 4 \), 1. Does the production function display decreasing, constant, or increasing returns to scale? Explain 2. What is the short run total cost equation (function with \( q) \) ? 3. What is the level of output (q) that minimizes the total cost? - Calculate the components and the magnitude of the vectors \( \overrightarrow{V_{1}}=\vec{A}+\vec{B}, \overrightarrow{V_{2}}=\vec{A}-\vec{B} \) and \( \overrightarrow{V_{3}}=2 \vec{A}-3 \vec{B} \). - Determine the unit vectors carried by the veetors \( \overrightarrow{V_{1}}, \vec{V}_{2} \) and \( \overrightarrow{V_{3}} \). - calculate the dot product and cross product of vectors \( \vec{A} \) et \( \vec{B} \). Fxercice 08: we consider three vectors: \( \vec{V}_{1}\left(\begin{array}{l}x \\ 3 \\ z\end{array}\right) \), \[ \overrightarrow{V_{2}}\left(\begin{array}{l} 1 \\ 2 \\ 2 \end{array}\right) \text { and } \overrightarrow{V_{3}}\left(\begin{array}{c} 2 \\ -2 \\ 1 \end{array}\right) \] 1- Show that the vectors \( \vec{V}_{2} \) and \( \vec{V}_{3} \) are orthogonal. 2- Détermine \( x \) and \( z \) so that the vectors \( \vec{V}_{1} \) and \( \vec{V}_{2} \) are parallel. 3- Determine the direction (cosines) of the vector \( \vec{V}_{3} \). 4. We suppose that \( x=2 \) and \( z=2 \). Calculate the area of the parallelogram constructed by the vectors \( \overrightarrow{V_{1}} \) and \( \overrightarrow{V_{3}} \). 10. If \( \mathrm{A}=\{2,4,8,16\} \) and \( A \cup B=\{1,2,4,8,16) \), find one element in set B . II. If \( \mathrm{A}=\{ \) all even numbers less than 10\( \} \) and \( \mathrm{B}= \) (all multiples of 3 less than 10\( \} \), list the elements in A and B and draw a \( V \) enn diagram showing the relationship B. 12. If \( \mathrm{A}= \) \{all positive numbers less than 8\( \} \) and \( \mathrm{B}=\{ \) all multiples of 3 less than 10\( \} \), list the elenents in the sets (i) \( \mathrm{A} \cap B \) (ii) \( A \cup B \). e) Given that \( V=\left[V_{1}, V_{2}, V_{3}, V_{4}, V_{5}\right] \) \[ V_{1}=\left(\begin{array}{r}1 \\ -1 \\ -3 \\ 2\end{array}\right), V_{2}=\left(\begin{array}{r}-1 \\ 1 \\ 1 \\ -1\end{array}\right), V_{3}=\left(\begin{array}{r}2 \\ 2 \\ -2 \\ -1\end{array}\right) \cdot V_{4}=\left(\begin{array}{r}-2 \\ -6 \\ 1 \\ 3\end{array}\right), V_{5}=\left(\begin{array}{r}1 \\ -2 \\ -2 \\ 1\end{array}\right) \text { in } \] Determine : (i) the rank of A (ii) the null space of A (iii) if the vectors \( V_{1}, V_{2}, V_{3}, V_{4} \) and \( V_{5} \) span \( \mathbb{R}^{4} \) (e) Given that \( V=\left[V_{1}, V_{2}, V_{3}, V_{4}, V_{5}\right] \) \[ V_{1}=\left(\begin{array}{r}1 \\ -1 \\ -3 \\ 2\end{array}\right), V_{2}=\left(\begin{array}{r}-1 \\ 1 \\ 1 \\ -1\end{array}\right), V_{3}=\left(\begin{array}{r}2 \\ 2 \\ -2 \\ -1\end{array}\right) \cdot V_{4}=\left(\begin{array}{r}-2 \\ -6 \\ 1 \\ 3\end{array}\right), V_{5}=\left(\begin{array}{r}1 \\ -2 \\ -2 \\ 1\end{array}\right) \text { in } \] Determine : (i) the rank of A (ii) the null space of A (iii) if the vectors \( V_{1}, V_{2}, V_{3}, V_{4} \) and \( V_{5} \) span \( \mathbb{R}^{4} \) \[ A=\left(\begin{array}{cccc} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \] EsERcizio 1 Provare che le seguenti applicazioni non sono forme bilineari: (X) \( b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R} \) tale che \( \left.b\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=-x x^{\prime}-x y^{\prime}+3 ;\right) \mathbb{N} \) (L) \( b: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R} \) tale che \( b\left((x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)=e^{x x^{\prime}}-y y^{\prime} \); (Ni) \( b: \mathcal{M}_{2}(\mathbb{R}) \times \mathcal{M}_{2}(\mathbb{R}) \rightarrow \mathbb{R} \) tale che \( b(A, B)=\operatorname{det}(A+B) \) (iv) \( b: \mathbb{R}_{\leqslant 1}[x] \times \mathbb{R}_{\leqslant 1}[x] \rightarrow \mathbb{R} \) tale che \( b\left(a x+\alpha, a^{\prime} x+\alpha^{\prime}\right)=a a^{\prime}+\alpha \); (v) \( b: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \) tale che \( b\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\left|x_{1} y_{1}+\cdots+x_{n} y_{n}\right| \). SVOLGIMENTO (i) Si trova \( b(\mathbf{0}, \mathbf{0})=3 \), pertanto \( b \) non può essere una forma bilineare. (i) Abbiamo \( b(\mathbf{0}, \mathbf{0})=1 \). (if) La funzione determinante non ci permette di portare fuori le costanti moltiplicative. Per esempio sia \( \lambda=2 \). Allora \[ b\left(2 I_{2}, \mathbf{0}_{2}\right)=\operatorname{det}\left(2 I_{2}\right)=4 \] mentre \[ 2 b\left(I_{2}, \mathbf{0}_{2}\right)=2 \operatorname{det}\left(I_{2}\right)=2 \] (iv) Abbiamo che \( b(1,0)=1 \).
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy