Q:
53-62 - Grafique la función, no al localizar puntos sino empezando
de las gráficas de las Figuras 4 y 9. Exprese el dominio, rango y
asintota.
59. \( y=1-\log _{10} x \)
Q:
\( \left(x+\frac{\pi}{4}\right)-\cos x=0 \) em \( [-\pi, \pi[ \)
Q:
53-62 : Grafique la función, no al localizar puntos sino empezando
de las gráficas de las Figuras 4 y 9 . Exprese el dominio, rango \( y \)
asíntota.
.53. \( f(x)=\log _{2}(x-4) \)
.55. \( g(x)=\log _{5}(-x) \)
.57. \( y=2+\log _{3} x \)
59. \( y=1-\log _{10} x \)
61. \( y=|\ln x| \)
Q:
The domain is all real numbers, and the range is \( y \leq 0 \).
The domain is \( x>0 \), and the range is all real numbers.
The domain and range are all real numbers.
The domain is \( x<0 \), and the range is \( y>0 \).
Q:
Dado el conjunto \( S=\{x \in R|\log | x-1 \mid<1\} * \)
Determine \( S \cap([0,2] \cup[12,20]) \)
Q:
The exponential function given by \( \mathrm{H}(\mathrm{t}=80,038.18(1.0484) \), where \( t \) is the number of years after 2012, can be used to project the number of centenarians in a certain
country. Use this function to project the centenarian population in this country in 2016 and in 2043 .
The centenarian population in 2016 is approximately
(Round to the nearest whole number.)
Q:
The number of concurrent users of a social networking site has increased dramatically since 2004. By 2013 , this social networking site could connect concurrently 70
million users online. The function \( \mathrm{P}(\mathrm{t})=2.566(1.476)^{\mathrm{l}} \), where t is the number of years after 2004, models this increase in millions of users. Estimate the number of
users of this site that could be online concurrently in 2005 , in 2009 , and in 2012 . Round to the nearest million users.
The number of users of this site that could be online concurrently in 2005 is approximately
(Round to the nearest whole number.)
Q:
Escribe en forma polar los complejos sig
\( z=(\operatorname{sen}(\alpha+\pi)+i \cos (\pi-\alpha) \)
Q:
The number of concurrent users of a social networking site has increased dramatically since 2000 . By 2009, this social networking site could connect concurrently 70
million users online. The function \( \mathrm{P}(\mathrm{t})=2.462(1.481)^{\mathrm{l}} \), where t is the number of years after 2000 , models this increase in millions of users. Estimate the number of
users of this site that could be online concurrently in 2001 , in 2005 , and in 2008 . Round to the nearest million users.
The number of users of this site that could be online concurrently in 2001 is approximately p(8)=37 million.
(Round to the nearest whole number.)
Q:
Sea \( f:[-\pi, \pi] ® R \) la función definida por *
\( f(x)=\cos ^{4}(x)+\operatorname{sen}^{2}(x)-1 \) ¿En cuántos
puntos el gráfico de esta función
interseca al eje de las abscisas?
Tu respuesta
Pon a prueba tus conocimientos sobre Precálculo!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar