Question
\( x=\frac{5^{2}-\sqrt[3]{27}+\sqrt[4]{49}}{25-2(10)} \) Round off your answer to TWO decimal
Ask by Smith Rojas. in South Africa
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( x \approx 4.93 \)
Solution
Calculate or simplify the expression \( (5^{2}-\sqrt[3]{27}+\sqrt[4]{49})/(25-2(10)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(5^{2}-\sqrt[3]{27}+\sqrt[4]{49}\right)}{\left(25-2\times 10\right)}\)
- step1: Remove the parentheses:
\(\frac{5^{2}-\sqrt[3]{27}+\sqrt[4]{49}}{25-2\times 10}\)
- step2: Simplify the root:
\(\frac{5^{2}-3+\sqrt[4]{49}}{25-2\times 10}\)
- step3: Simplify the root:
\(\frac{5^{2}-3+\sqrt{7}}{25-2\times 10}\)
- step4: Multiply the numbers:
\(\frac{5^{2}-3+\sqrt{7}}{25-20}\)
- step5: Calculate:
\(\frac{22+\sqrt{7}}{25-20}\)
- step6: Subtract the numbers:
\(\frac{22+\sqrt{7}}{5}\)
The value of \( x \) is approximately 4.92915 when rounded to two decimal places.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
First, let's simplify the expression for \( x \): 1. Calculate \( 5^{2} \) which is \( 25 \). 2. Calculate \( \sqrt[3]{27} \) which is \( 3 \). 3. Calculate \( \sqrt[4]{49} \) which is \( 7 \). 4. Now plug these values back into the equation: \( x = \frac{25 - 3 + 7}{25 - 20} \) 5. Simplifying the numerator: \( 25 - 3 + 7 = 29 \) 6. Simplifying the denominator: \( 25 - 20 = 5 \) Now, computing \( x \): \[ x = \frac{29}{5} = 5.8 \] Rounding off to two decimal places, the answer is \( \boxed{5.80} \).