Find the dot product \( \mathbf{v} \cdot \mathbf{w} \) and the angle between \( \mathbf{v} \) and \( \mathbf{w} \). \[ \mathbf{v}=-4 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{w}=\mathbf{i}+4 \mathbf{j}+4 \mathbf{k} \] \( \mathbf{v} \cdot \mathbf{w}=\square \) (Simplify your answer. Type an exact value, using radicals as needed.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the dot product \( \mathbf{v} \cdot \mathbf{w} \) and the angle between \( \mathbf{v} \) and \( \mathbf{w} \), we start with the dot product formula: \[ \mathbf{v} \cdot \mathbf{w} = v_x w_x + v_y w_y + v_z w_z \] Here, \( \mathbf{v} = -4\mathbf{i} + 2\mathbf{j} + \mathbf{k} \) and \( \mathbf{w} = \mathbf{i} + 4\mathbf{j} + 4\mathbf{k} \). Identifying the components: - For \( \mathbf{v} \): \( v_x = -4, v_y = 2, v_z = 1 \) - For \( \mathbf{w} \): \( w_x = 1, w_y = 4, w_z = 4 \) Now, we compute the dot product: \[ \mathbf{v} \cdot \mathbf{w} = (-4)(1) + (2)(4) + (1)(4) \] \[ = -4 + 8 + 4 \] \[ = 8 - 4 = 4 \] Thus, \( \mathbf{v} \cdot \mathbf{w} = 4 \). Next, to find the angle \( \theta \) between \( \mathbf{v} \) and \( \mathbf{w} \), we use the formula: \[ \cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|} \] First, we calculate the magnitudes of \( \mathbf{v} \) and \( \mathbf{w} \): \[ |\mathbf{v}| = \sqrt{(-4)^2 + (2)^2 + (1)^2} = \sqrt{16 + 4 + 1} = \sqrt{21} \] \[ |\mathbf{w}| = \sqrt{(1)^2 + (4)^2 + (4)^2} = \sqrt{1 + 16 + 16} = \sqrt{33} \] Now plugging in the values: \[ \cos(\theta) = \frac{4}{\sqrt{21} \sqrt{33}} = \frac{4}{\sqrt{693}} \] To find \( \theta \), we take the arccosine: \[ \theta = \cos^{-1}\left(\frac{4}{\sqrt{693}}\right) \] So the final results are: \[ \mathbf{v} \cdot \mathbf{w} = 4 \] And the angle \( \theta = \cos^{-1}\left(\frac{4}{\sqrt{693}}\right) \).