Question
upstudy study bank question image url

Find the dot product \( \mathbf{v} \cdot \mathbf{w} \) and the angle between \( \mathbf{v} \) and \( \mathbf{w} \). \[ \mathbf{v}=-4 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{w}=\mathbf{i}+4 \mathbf{j}+4 \mathbf{k} \] \( \mathbf{v} \cdot \mathbf{w}=\square \) (Simplify your answer. Type an exact value, using radicals as needed.)

Ask by Coleman Reyes. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The dot product \( \mathbf{v} \cdot \mathbf{w} \) is 8.

Solution

To find the dot product \( \mathbf{v} \cdot \mathbf{w} \) and the angle between the vectors \( \mathbf{v} \) and \( \mathbf{w} \), we will follow these steps: 1. **Calculate the dot product** \( \mathbf{v} \cdot \mathbf{w} \). 2. **Find the magnitudes** of \( \mathbf{v} \) and \( \mathbf{w} \). 3. **Use the dot product and magnitudes** to find the angle between the vectors. ### Step 1: Calculate the dot product The dot product of two vectors \( \mathbf{v} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k} \) and \( \mathbf{w} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k} \) is given by: \[ \mathbf{v} \cdot \mathbf{w} = a_1 a_2 + b_1 b_2 + c_1 c_2 \] For our vectors: - \( \mathbf{v} = -4 \mathbf{i} + 2 \mathbf{j} + 1 \mathbf{k} \) (where \( a_1 = -4, b_1 = 2, c_1 = 1 \)) - \( \mathbf{w} = 1 \mathbf{i} + 4 \mathbf{j} + 4 \mathbf{k} \) (where \( a_2 = 1, b_2 = 4, c_2 = 4 \)) Now, we can calculate the dot product: \[ \mathbf{v} \cdot \mathbf{w} = (-4)(1) + (2)(4) + (1)(4) \] Calculating each term: \[ = -4 + 8 + 4 \] Now, summing these values: \[ = -4 + 8 + 4 = 8 \] ### Step 2: Find the magnitudes of \( \mathbf{v} \) and \( \mathbf{w} \) The magnitude of a vector \( \mathbf{v} = a \mathbf{i} + b \mathbf{j} + c \mathbf{k} \) is given by: \[ \|\mathbf{v}\| = \sqrt{a^2 + b^2 + c^2} \] Calculating the magnitude of \( \mathbf{v} \): \[ \|\mathbf{v}\| = \sqrt{(-4)^2 + 2^2 + 1^2} = \sqrt{16 + 4 + 1} = \sqrt{21} \] Calculating the magnitude of \( \mathbf{w} \): \[ \|\mathbf{w}\| = \sqrt{(1)^2 + (4)^2 + (4)^2} = \sqrt{1 + 16 + 16} = \sqrt{33} \] ### Step 3: Find the angle between the vectors The angle \( \theta \) between two vectors can be found using the formula: \[ \cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} \] Substituting the values we found: \[ \cos(\theta) = \frac{8}{\sqrt{21} \cdot \sqrt{33}} = \frac{8}{\sqrt{693}} \] Thus, the dot product \( \mathbf{v} \cdot \mathbf{w} \) is: \[ \mathbf{v} \cdot \mathbf{w} = 8 \] And the angle can be found using the inverse cosine function if needed, but the dot product is the primary answer requested. ### Final Answer \[ \mathbf{v} \cdot \mathbf{w} = 8 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the dot product \( \mathbf{v} \cdot \mathbf{w} \) and the angle between \( \mathbf{v} \) and \( \mathbf{w} \), we start with the dot product formula: \[ \mathbf{v} \cdot \mathbf{w} = v_x w_x + v_y w_y + v_z w_z \] Here, \( \mathbf{v} = -4\mathbf{i} + 2\mathbf{j} + \mathbf{k} \) and \( \mathbf{w} = \mathbf{i} + 4\mathbf{j} + 4\mathbf{k} \). Identifying the components: - For \( \mathbf{v} \): \( v_x = -4, v_y = 2, v_z = 1 \) - For \( \mathbf{w} \): \( w_x = 1, w_y = 4, w_z = 4 \) Now, we compute the dot product: \[ \mathbf{v} \cdot \mathbf{w} = (-4)(1) + (2)(4) + (1)(4) \] \[ = -4 + 8 + 4 \] \[ = 8 - 4 = 4 \] Thus, \( \mathbf{v} \cdot \mathbf{w} = 4 \). Next, to find the angle \( \theta \) between \( \mathbf{v} \) and \( \mathbf{w} \), we use the formula: \[ \cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|} \] First, we calculate the magnitudes of \( \mathbf{v} \) and \( \mathbf{w} \): \[ |\mathbf{v}| = \sqrt{(-4)^2 + (2)^2 + (1)^2} = \sqrt{16 + 4 + 1} = \sqrt{21} \] \[ |\mathbf{w}| = \sqrt{(1)^2 + (4)^2 + (4)^2} = \sqrt{1 + 16 + 16} = \sqrt{33} \] Now plugging in the values: \[ \cos(\theta) = \frac{4}{\sqrt{21} \sqrt{33}} = \frac{4}{\sqrt{693}} \] To find \( \theta \), we take the arccosine: \[ \theta = \cos^{-1}\left(\frac{4}{\sqrt{693}}\right) \] So the final results are: \[ \mathbf{v} \cdot \mathbf{w} = 4 \] And the angle \( \theta = \cos^{-1}\left(\frac{4}{\sqrt{693}}\right) \).

Related Questions

Latest Physics Questions

Responda las preguntas 4 a 6 a partir de la sigulente información oque de madera de masa \( M \) se encuentra en reposo sobro una superficie sin rozamienta. Bi una bal asa \( m \) se incrusta en ella y el bloque después del choque tiene una velocidad \( \mathbf{v} \), I velocidad de la bala al incrustarse al bloque \( \varphi \) \[ \begin{array}{l} (1-M / m) v \\ (1-m / M) v \\ (1+M / m) v \\ (1+m / M) v \end{array} \] \( \mathrm{M}=10 \mathrm{~kg}, \mathrm{~m}=1 / 2 \mathrm{~kg} \) y \( \mathrm{v}=15 \mathrm{~m} / \mathrm{s} \) ia velocidad cial de la bala era de: \( 300 \mathrm{~m} / \mathrm{s} \) \( 311 \mathrm{~m} / \mathrm{s} \) \( 315 \mathrm{~m} / \mathrm{s} \) \( 321 \mathrm{~m} / \mathrm{s} \) cambia el bloque de masa \( M \) por un bloque es ei triple de \( \mathbf{m} \), se vuelve a disparar ia na baia de tal manera que vuelva a quedar ustada en el nuevo bloque. la velocidad final onjunto será n cuarto de la velocidad inicial a tercio de ta velocidad inicial. ratro veces de la velocidad inicial is veces de la velocidad inicial 7 Un patinador se lanza desde una rampa de nits ra hbajando por ella con volocidnd ratisbla A analizar la calda del patinador se pude co cluir que hay A. encrgfa mocanica y energla etastica B. energla potencial gravitatoria y energla potencial elastica. C enorgla potencial gravitatoria y energla cinetica. D energla potencial elastica y energia cind ca. 8. Un motociclista tiene una velocidad de 72 kr y tiene una masa de 90 kg . su energla cinet es A 1800 J B. 6480 J . C 18000 J D. 36000 J
Physics Colombia Feb 03, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy