Question
upstudy study bank question image url

\( D \) and \( R \) are points on a polygon. \( D^{\prime} \) and \( R^{\prime} \) are the points under a translation. Find \( R^{\prime} \) \( D(6,-10) \) \( D^{\prime}(15,-9) \) \( R(12,-1) \)

Ask by Robbins Wagner. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( R^{\prime} = (21,\ 0) \)

Solution

To find the coordinates of \( R' \) under the same translation that maps \( D \) to \( D' \), follow these steps: 1. **Determine the Translation Vector:** The translation moves point \( D(6, -10) \) to \( D'(15, -9) \). The translation vector \((a, b)\) can be found by subtracting the coordinates of \( D \) from \( D' \): \[ a = 15 - 6 = 9 \] \[ b = -9 - (-10) = 1 \] So, the translation vector is \((9, 1)\). 2. **Apply the Translation to Point \( R \):** To find \( R' \), add the translation vector to the coordinates of \( R(12, -1) \): \[ R'_x = 12 + 9 = 21 \] \[ R'_y = -1 + 1 = 0 \] Therefore, \( R' \) is at \((21, 0)\). **Answer:** \( R^{\prime} = (21,\ 0) \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find \( R^{\prime} \), we need to determine the translation applied to point \( D \) to get to point \( D^{\prime} \). 1. First, identify the translation vector: \[ \text{Translation} = D^{\prime} - D = (15 - 6, -9 - (-10)) = (9, 1) \] 2. Now, apply the same translation vector to point \( R \): \[ R^{\prime} = R + \text{Translation} = (12, -1) + (9, 1) = (12 + 9, -1 + 1) = (21, 0) \] Thus, the coordinates of \( R^{\prime} \) are \( (21, 0) \).

Related Questions

Exercice 82 Le plan est rapporté à un repère orthonormal direct \( (0, \vec{u}, \vec{v}) \). On appelle \( f \) l'application qui, à tout point \( M \) d'affixe \( z(z \neq-1) \) associe le point \( M^{\prime} \) d'affixe \( z^{\prime} \) telle que : \( z^{\prime}=\frac{-i z-2}{z+1} \). Soient A, B et C les points d'affixes respectives \( a=-1, b=2 i \) et \( c=-i \). 1) Soit \( C^{\prime} \) l'image du point \( C \) par \( f \). Donner l'affixe \( c^{\prime} \) du point \( C^{\prime} \) sous forme algébrique, puis sous forme trigonométrique. 2) Calcule l'affixe \( d \) du point \( D \) ayant pour image par \( f \) le point \( D^{\prime} \) d'affixe \( d^{\prime}=\frac{1}{2} \). 3) Pour tout nombre complexe \( z \) différent de -1 , on note \( p \) le module de \( z+1 \) (c'est-à-dire \( |z+1|=p) \) et \( p^{\prime} \) le module de \( z^{\prime}+i\left(\right. \) c'est-à-dire \( \left.\left|z^{\prime}+i\right|=p^{\prime}\right) \). a) Démontre que pour tout nombre complexe \( z \) différent de -1 , on a : \( p p^{\prime}=\sqrt{5} \). b) Si le point \( M \) appartient au cercle \( (\Gamma) \) de centre A et de rayon 2 , montre qu'alors \( M^{\prime}=f(M) \) appartient à un cercle ( \( \left.\Gamma^{\prime}\right) \) dont on précisera le centre et le rayon. 4) Pour tout nombre complexe \( z \) différent de -1 , on considère le nombre complexe \( \omega=\frac{z-2 t}{z+1} \). a) Interprète géométriquement l'argument du nombre complexe \( \omega \). b) Montre que \( z^{\prime}=-i \omega \). c) Détermine l'ensemble \( (F) \) des points \( M \) d'affixe \( z \) telle que \( z^{\prime} \) soit un réel non nul. d) Vérifie que le point \( D \) appartient aux ensembles \( (\Gamma) \) et \( (F) \). 5) Représente les ensembles \( (\Gamma) \), (F) et \( \left(\Gamma^{\prime}\right) \) en prenant 4 cm pour unité graphique.
Geometry Mali Feb 03, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy