Answer
The expressions can be combined as \( x^{2/3} \left(2 \cdot \sqrt[3]{7} + 8 \cdot \sqrt[3]{6}\right) \).
Solution
It looks like you've provided two expressions involving cube roots:
1. \( 2 \sqrt[3]{7x^{2}} \)
2. \( 8 \sqrt[3]{6x^{2}} \)
Let's explore how to simplify and potentially combine these expressions.
### Simplifying Each Expression
1. **First Expression:**
\[
2 \sqrt[3]{7x^{2}}
\]
This can be rewritten using exponent notation:
\[
2 \cdot 7^{1/3} \cdot x^{2/3}
\]
So, the simplified form is:
\[
2 \cdot 7^{1/3} \cdot x^{2/3}
\]
2. **Second Expression:**
\[
8 \sqrt[3]{6x^{2}}
\]
Similarly, using exponent notation:
\[
8 \cdot 6^{1/3} \cdot x^{2/3}
\]
This can also be expressed by factoring out constants:
\[
2^3 \cdot 6^{1/3} \cdot x^{2/3} = 2 \cdot 2^2 \cdot 6^{1/3} \cdot x^{2/3}
\]
Simplifying further:
\[
8 \cdot 6^{1/3} \cdot x^{2/3}
\]
### Combining the Expressions
Both expressions share a common term \( x^{2/3} \). We can factor this out to combine the expressions:
\[
2 \cdot 7^{1/3} \cdot x^{2/3} + 8 \cdot 6^{1/3} \cdot x^{2/3} = x^{2/3} \left(2 \cdot 7^{1/3} + 8 \cdot 6^{1/3}\right)
\]
### Final Simplified Form
The combined expression is:
\[
x^{2/3} \left(2 \cdot \sqrt[3]{7} + 8 \cdot \sqrt[3]{6}\right)
\]
This is as simplified as the expression can get unless there are specific values for \(x\) or further context provided.
### Summary
- **Simplified First Expression:** \( 2 \cdot 7^{1/3} \cdot x^{2/3} \)
- **Simplified Second Expression:** \( 8 \cdot 6^{1/3} \cdot x^{2/3} \)
- **Combined Expression:** \( x^{2/3} \left(2 \cdot \sqrt[3]{7} + 8 \cdot \sqrt[3]{6}\right) \)
If you have a specific operation in mind (like adding, subtracting, multiplying, etc.) or need further assistance with these expressions, feel free to provide more details!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution