Responder
The expressions can be combined as \( x^{2/3} \left(2 \cdot \sqrt[3]{7} + 8 \cdot \sqrt[3]{6}\right) \).
Solución
It looks like you've provided two expressions involving cube roots:
1. \( 2 \sqrt[3]{7x^{2}} \)
2. \( 8 \sqrt[3]{6x^{2}} \)
Let's explore how to simplify and potentially combine these expressions.
### Simplifying Each Expression
1. **First Expression:**
\[
2 \sqrt[3]{7x^{2}}
\]
This can be rewritten using exponent notation:
\[
2 \cdot 7^{1/3} \cdot x^{2/3}
\]
So, the simplified form is:
\[
2 \cdot 7^{1/3} \cdot x^{2/3}
\]
2. **Second Expression:**
\[
8 \sqrt[3]{6x^{2}}
\]
Similarly, using exponent notation:
\[
8 \cdot 6^{1/3} \cdot x^{2/3}
\]
This can also be expressed by factoring out constants:
\[
2^3 \cdot 6^{1/3} \cdot x^{2/3} = 2 \cdot 2^2 \cdot 6^{1/3} \cdot x^{2/3}
\]
Simplifying further:
\[
8 \cdot 6^{1/3} \cdot x^{2/3}
\]
### Combining the Expressions
Both expressions share a common term \( x^{2/3} \). We can factor this out to combine the expressions:
\[
2 \cdot 7^{1/3} \cdot x^{2/3} + 8 \cdot 6^{1/3} \cdot x^{2/3} = x^{2/3} \left(2 \cdot 7^{1/3} + 8 \cdot 6^{1/3}\right)
\]
### Final Simplified Form
The combined expression is:
\[
x^{2/3} \left(2 \cdot \sqrt[3]{7} + 8 \cdot \sqrt[3]{6}\right)
\]
This is as simplified as the expression can get unless there are specific values for \(x\) or further context provided.
### Summary
- **Simplified First Expression:** \( 2 \cdot 7^{1/3} \cdot x^{2/3} \)
- **Simplified Second Expression:** \( 8 \cdot 6^{1/3} \cdot x^{2/3} \)
- **Combined Expression:** \( x^{2/3} \left(2 \cdot \sqrt[3]{7} + 8 \cdot \sqrt[3]{6}\right) \)
If you have a specific operation in mind (like adding, subtracting, multiplying, etc.) or need further assistance with these expressions, feel free to provide more details!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución