Pregunta
upstudy study bank question image url

\( 2 \sqrt[3]{7 x^{2}} \) and \( 8 \sqrt[3]{6 x^{2}} \)

Ask by George Chavez. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expressions can be combined as \( x^{2/3} \left(2 \cdot \sqrt[3]{7} + 8 \cdot \sqrt[3]{6}\right) \).

Solución

It looks like you've provided two expressions involving cube roots: 1. \( 2 \sqrt[3]{7x^{2}} \) 2. \( 8 \sqrt[3]{6x^{2}} \) Let's explore how to simplify and potentially combine these expressions. ### Simplifying Each Expression 1. **First Expression:** \[ 2 \sqrt[3]{7x^{2}} \] This can be rewritten using exponent notation: \[ 2 \cdot 7^{1/3} \cdot x^{2/3} \] So, the simplified form is: \[ 2 \cdot 7^{1/3} \cdot x^{2/3} \] 2. **Second Expression:** \[ 8 \sqrt[3]{6x^{2}} \] Similarly, using exponent notation: \[ 8 \cdot 6^{1/3} \cdot x^{2/3} \] This can also be expressed by factoring out constants: \[ 2^3 \cdot 6^{1/3} \cdot x^{2/3} = 2 \cdot 2^2 \cdot 6^{1/3} \cdot x^{2/3} \] Simplifying further: \[ 8 \cdot 6^{1/3} \cdot x^{2/3} \] ### Combining the Expressions Both expressions share a common term \( x^{2/3} \). We can factor this out to combine the expressions: \[ 2 \cdot 7^{1/3} \cdot x^{2/3} + 8 \cdot 6^{1/3} \cdot x^{2/3} = x^{2/3} \left(2 \cdot 7^{1/3} + 8 \cdot 6^{1/3}\right) \] ### Final Simplified Form The combined expression is: \[ x^{2/3} \left(2 \cdot \sqrt[3]{7} + 8 \cdot \sqrt[3]{6}\right) \] This is as simplified as the expression can get unless there are specific values for \(x\) or further context provided. ### Summary - **Simplified First Expression:** \( 2 \cdot 7^{1/3} \cdot x^{2/3} \) - **Simplified Second Expression:** \( 8 \cdot 6^{1/3} \cdot x^{2/3} \) - **Combined Expression:** \( x^{2/3} \left(2 \cdot \sqrt[3]{7} + 8 \cdot \sqrt[3]{6}\right) \) If you have a specific operation in mind (like adding, subtracting, multiplying, etc.) or need further assistance with these expressions, feel free to provide more details!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify or compare \( 2 \sqrt[3]{7 x^{2}} \) and \( 8 \sqrt[3]{6 x^{2}} \), you can start by factoring out the coefficients and the cube roots. It's fun to think of it like comparing two superhero powers! The first expression, \( 2 \sqrt[3]{7 x^{2}} \), has a power of 2, while the second, \( 8 \sqrt[3]{6 x^{2}} \), packs a punch with a power of 8. Now, if you want to see which one is greater, you might want to express them both in the same format. By rewriting both terms, you could delineate \( \sqrt[3]{\frac{7}{3} \cdot \frac{2}{2}} \) versus \( \sqrt[3]{\frac{6}{8}} \) and really dive into the calculations! Always make sure to check for common mistakes like forgetting to cube some parts when simplifying!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad