solve this equation for using the quadratic formula \( x^{2}=(x-1)^{2}+(x-2)^{2} \), and \( x ? \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To solve the equation \( x^{2} = (x-1)^{2} + (x-2)^{2} \), first, expand the right side: \[ (x-1)^{2} = x^{2} - 2x + 1 \] \[ (x-2)^{2} = x^{2} - 4x + 4 \] Adding these gives: \[ (x-1)^{2} + (x-2)^{2} = (x^{2} - 2x + 1) + (x^{2} - 4x + 4) = 2x^{2} - 6x + 5 \] Now set the equation: \[ x^{2} = 2x^{2} - 6x + 5 \] Rearranging gives: \[ 0 = x^{2} - 6x + 5 \] Now, using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = -6 \), and \( c = 5 \): \[ b^2 - 4ac = (-6)^2 - 4(1)(5) = 36 - 20 = 16 \] So we have: \[ x = \frac{6 \pm \sqrt{16}}{2 \times 1} = \frac{6 \pm 4}{2} \] This gives us two solutions: \[ x = \frac{10}{2} = 5 \quad \text{and} \quad x = \frac{2}{2} = 1 \] Thus, the solutions are \( x = 5 \) and \( x = 1 \).