Question
upstudy study bank question image url

a) \( \left(x^{5}-3 x^{2}+x+4\right): \not x \) b) \( \left(x^{4}+6 x^{3}+x^{2}-2\right): x^{2} \) c) \( \left(x^{5}-1\right): x^{3} \) d) \( \left(4 x^{4}+3 x^{3}-2 x^{2}+x+3\right):(2 x) \) e) \( \left(6 x^{5}+4 x^{2}-3 x+4\right):\left(3 x^{2}\right) \) f) \( \left(2 x^{5}+x^{4}\right):\left(4 x^{3}\right) \)

Ask by Adkins Pope. in Spain
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a) \( x^{4} - 3x + 1 + \frac{4}{x} \) b) \( x^{2} + 6x + 1 - \frac{2}{x^{2}} \) c) \( x^{2} - \frac{1}{x^{3}} \) d) \( 2x^{3} + \frac{3}{2}x^{2} - x + \frac{1}{2} + \frac{3}{2x} \) e) \( 2x^{3} + \frac{4}{3} - \frac{1}{x} + \frac{4}{3x^{2}} \) f) \( \frac{1}{2}x^{2} + \frac{1}{4}x \)

Solution

Claro, a continuación se presentan las divisiones solicitadas resueltas: ### a) \( \frac{x^{5} - 3x^{2} + x + 4}{x} \) Dividimos cada término del polinomio entre \( x \): \[ \frac{x^{5}}{x} - \frac{3x^{2}}{x} + \frac{x}{x} + \frac{4}{x} = x^{4} - 3x + 1 + \frac{4}{x} \] **Resultado:** \[ x^{4} - 3x + 1 + \frac{4}{x} \] --- ### b) \( \frac{x^{4} + 6x^{3} + x^{2} - 2}{x^{2}} \) Dividimos cada término del polinomio entre \( x^{2} \): \[ \frac{x^{4}}{x^{2}} + \frac{6x^{3}}{x^{2}} + \frac{x^{2}}{x^{2}} - \frac{2}{x^{2}} = x^{2} + 6x + 1 - \frac{2}{x^{2}} \] **Resultado:** \[ x^{2} + 6x + 1 - \frac{2}{x^{2}} \] --- ### c) \( \frac{x^{5} - 1}{x^{3}} \) Dividimos cada término del polinomio entre \( x^{3} \): \[ \frac{x^{5}}{x^{3}} - \frac{1}{x^{3}} = x^{2} - \frac{1}{x^{3}} \] **Resultado:** \[ x^{2} - \frac{1}{x^{3}} \] --- ### d) \( \frac{4x^{4} + 3x^{3} - 2x^{2} + x + 3}{2x} \) Dividimos cada término del polinomio entre \( 2x \): \[ \frac{4x^{4}}{2x} + \frac{3x^{3}}{2x} - \frac{2x^{2}}{2x} + \frac{x}{2x} + \frac{3}{2x} = 2x^{3} + \frac{3}{2}x^{2} - x + \frac{1}{2} + \frac{3}{2x} \] **Resultado:** \[ 2x^{3} + \frac{3}{2}x^{2} - x + \frac{1}{2} + \frac{3}{2x} \] --- ### e) \( \frac{6x^{5} + 4x^{2} - 3x + 4}{3x^{2}} \) Dividimos cada término del polinomio entre \( 3x^{2} \): \[ \frac{6x^{5}}{3x^{2}} + \frac{4x^{2}}{3x^{2}} - \frac{3x}{3x^{2}} + \frac{4}{3x^{2}} = 2x^{3} + \frac{4}{3} - \frac{1}{x} + \frac{4}{3x^{2}} \] **Resultado:** \[ 2x^{3} + \frac{4}{3} - \frac{1}{x} + \frac{4}{3x^{2}} \] --- ### f) \( \frac{2x^{5} + x^{4}}{4x^{3}} \) Dividimos cada término del polinomio entre \( 4x^{3} \): \[ \frac{2x^{5}}{4x^{3}} + \frac{x^{4}}{4x^{3}} = \frac{1}{2}x^{2} + \frac{1}{4}x \] **Resultado:** \[ \frac{1}{2}x^{2} + \frac{1}{4}x \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's embark on this polynomial division journey! For \( \left(x^{5}-3 x^{2}+x+4\right): \not x \), I'm guessing you meant you want to evaluate the expression, but division by zero isn't on the menu—let's steer clear of that! Moving on to \( \left(x^{4}+6 x^{3}+x^{2}-2\right): x^{2} \), when dividing each term by \( x^2 \), you'll end up with \( x^2 + 6x + 1 - \frac{2}{x^2} \). Just remember, don’t let those variables get lonely—keep in mind the domain where \( x \neq 0 \). Now, for \( \left(x^{5}-1\right): x^{3} \), division gives you \( x^2 - \frac{1}{x^3} \), but let's not forget, the remainder is \( -1 \). When tackling \( \left(4 x^{4}+3 x^{3}-2 x^{2}+x+3\right):(2 x) \), it’s a straightforward division yielding \( 2x^{3} + \frac{3}{2}x^{2} - x + \frac{3}{2} \). Always great to check for common factors! For \( \left(6 x^{5}+4 x^{2}-3 x+4\right): \left(3 x^{2}\right) \), divide term by term to find \( 2x^{3} + \frac{4}{3} - \frac{1}{x} + \frac{4}{3x^{2}} \). Remember, fractions can get a bit messy at times! Last but not least, \( \left(2 x^{5}+x^{4}\right): \left(4 x^{3}\right) \) simplifies to \( \frac{1}{2}x^{2} + \frac{1}{4}x \). Don't leave your expressions hanging out to dry—always consider factoring!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy