Question
upstudy study bank question image url

ЗАДАНИЕ №3 87150 Дан треугольник \( A B C \). Найдите \[ \begin{array}{l} \overrightarrow{A B}-\overrightarrow{A C} \\ \quad \overrightarrow{A B}-\overrightarrow{A C}= \end{array} \] \( \overrightarrow{B A} \) \( \overrightarrow{0} \) \( \overrightarrow{B C} \) \( \overrightarrow{A B} \) \( \overrightarrow{C A} \) \( \qquad \) \( \overrightarrow{C B} \)

Ask by Elliott Cross. in Russia
Feb 13,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

AB – AC равно вектору CB.

Solution

Рассмотрим векторы треугольника ABC: • Вектор AB = B – A • Вектор AC = C – A Вычислим разность:   AB – AC = (B – A) – (C – A) = B – A – C + A = B – C Заметим, что вектор, направленный от C к B, определяется как CB = B – C. Таким образом,   AB – AC = CB. Ответ: вектор CB.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Для решения данной задачи можно воспользоваться свойствами векторов. Векторы \(\overrightarrow{A B}\) и \(\overrightarrow{A C}\) можно выразить через координаты. Предположим, что \( A \), \( B \) и \( C \) имеют координаты \( A (x_A, y_A) \), \( B (x_B, y_B) \) и \( C (x_C, y_C) \). Вектор \(\overrightarrow{A B}\) будет равен: \[ \overrightarrow{A B} = \overrightarrow{B} - \overrightarrow{A} = (x_B - x_A, y_B - y_A) \] Вектор \(\overrightarrow{A C}\): \[ \overrightarrow{A C} = \overrightarrow{C} - \overrightarrow{A} = (x_C - x_A, y_C - y_A) \] Теперь подставим эти выражения в \(\overrightarrow{A B} - \overrightarrow{A C}\): \[ \overrightarrow{A B} - \overrightarrow{A C} = (x_B - x_A, y_B - y_A) - (x_C - x_A, y_C - y_A) \] При решении получаем: \[ \overrightarrow{A B} - \overrightarrow{A C} = (x_B - x_C, y_B - y_C) = \overrightarrow{B C} \] Следовательно, ответ: \[ \overrightarrow{A B} - \overrightarrow{A C} = \overrightarrow{B C} \]

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy