Question
Distributive properiy: Fractional coerricionts Use the distributive property to remove the parentheses. Simplify your answer as much as possible. \[ 8\left(\frac{1}{4} u+\frac{3}{2}\right) \] \( \square \)
Ask by Fleming Bartlett. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( 2u + 12 \)
Solution
To apply the **distributive property** to the expression \( 8\left(\frac{1}{4} u + \frac{3}{2}\right) \), follow these steps:
1. **Multiply each term inside the parentheses by 8:**
\[
8 \times \frac{1}{4}u + 8 \times \frac{3}{2}
\]
2. **Simplify each multiplication:**
- \( 8 \times \frac{1}{4}u = 2u \)
- \( 8 \times \frac{3}{2} = 12 \)
3. **Combine the simplified terms:**
\[
2u + 12
\]
**Final Answer:**
\[
2u + 12
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
To use the distributive property, multiply each term inside the parentheses by 8. So, we have: \[ 8 \left(\frac{1}{4} u + \frac{3}{2}\right) = 8 \cdot \frac{1}{4} u + 8 \cdot \frac{3}{2} \] Calculating those separately gives: \[ 8 \cdot \frac{1}{4} u = 2u \] \[ 8 \cdot \frac{3}{2} = 12 \] Putting it all together, we get: \[ 2u + 12 \] So the simplified expression is: \[ 2u + 12 \]