Question
(17) \( \frac{\frac{5 x+5 y}{x^{2} y^{2}}}{\frac{20}{x y}} \)
Ask by Chambers Rojas. in the United States
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The simplified expression is \( \frac{x + y}{4xy} \).
Solution
To simplify the expression:
\[
\frac{\frac{5x + 5y}{x^{2} y^{2}}}{\frac{20}{x y}}
\]
**Step 1: Rewrite the Expression**
Start by rewriting the complex fraction as a multiplication by the reciprocal:
\[
\frac{5x + 5y}{x^{2} y^{2}} \div \frac{20}{x y} = \frac{5x + 5y}{x^{2} y^{2}} \times \frac{x y}{20}
\]
**Step 2: Factor Common Terms**
Factor out the common term in the numerator:
\[
5x + 5y = 5(x + y)
\]
So the expression becomes:
\[
\frac{5(x + y)}{x^{2} y^{2}} \times \frac{x y}{20}
\]
**Step 3: Multiply the Fractions**
Multiply the numerators together and the denominators together:
\[
\frac{5(x + y) \cdot x y}{x^{2} y^{2} \cdot 20} = \frac{5x y (x + y)}{20x^{2} y^{2}}
\]
**Step 4: Simplify Coefficients**
Simplify the coefficients \( \frac{5}{20} \):
\[
\frac{5}{20} = \frac{1}{4}
\]
**Step 5: Simplify Variables**
Simplify the variable terms:
\[
\frac{x y}{x^{2} y^{2}} = \frac{1}{x y}
\]
**Step 6: Combine Simplifications**
Combine the simplified coefficients and variables:
\[
\frac{1}{4} \times \frac{x + y}{x y} = \frac{x + y}{4x y}
\]
**Final Simplified Expression:**
\[
\frac{x + y}{4x y}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To simplify \((17) \frac{\frac{5 x + 5 y}{x^{2} y^{2}}}{\frac{20}{x y}}\), we first rewrite the expression as a multiplication of fractions: \[ = \frac{5(x+y)}{x^2 y^2} \cdot \frac{xy}{20} \] Now we multiply the top and bottom: \[ = \frac{5(x+y) \cdot xy}{20 \cdot x^2 y^2} \] Next, we can simplify \( \frac{5}{20} = \frac{1}{4} \): \[ = \frac{(x+y) \cdot xy}{4 \cdot x^2 y^2} \] Now, we can simplify the expression further: \[ = \frac{(x+y)}{4xy} \cdot \frac{1}{xy} = \frac{x+y}{4xy} \] So the final simplified expression is: \[ \frac{x+y}{4xy} \]