Question
(A) Find the slope of the line that passes through the givin points.
(B) Find the poinlslope form of the equation of the line.
© Find the slope-intercept form of the equation of the line
(D) Find the slandard form of the equation of the line.
(
) and ( 1,4 )
(A) Select the correct choice below and, il necessary, fill in the answer box to complete your choico.
A.
(Type an integer or a simplified fraction.)
B. The slope is not defined
(B) What is the equation of the line in point-slope form? Select the correct choice below and, if necessary, fil in the answer box lo complete your choice.
A.
(Simplify your answer. Use integors or fractions for any numbors in the equation.)
B. There is no point-slope form
(B) Find the poinlslope form of the equation of the line.
© Find the slope-intercept form of the equation of the line
(D) Find the slandard form of the equation of the line.
(
(A) Select the correct choice below and, il necessary, fill in the answer box to complete your choico.
A.
B. The slope is not defined
(B) What is the equation of the line in point-slope form? Select the correct choice below and, if necessary, fil in the answer box lo complete your choice.
A.
B. There is no point-slope form
Ask by Haynes Munoz. in the United States
Jan 21,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
- (A) The slope
. - (B) The point-slope form is
. - © The slope-intercept form is
. - (D) The standard form is
.
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Like
The Deep Dive
The slope of the line passing through the points
and
is
. This indicates a horizontal line, as the
-coordinates are identical. Horizontal lines have zero slope because there is no vertical change between the two points, regardless of the horizontal distance.
For the point-slope form of the equation, you can use the formula
. With one point
and
, it simplifies to
, which further simplifies to
. This shows that the line remains constant at
.