Find the exact value of the expression. \[ \cos \left(\sin ^{-1} \frac{4}{5}+\tan ^{-1} \frac{5}{12}\right) \] \( \cos \left(\sin ^{-1} \frac{4}{5}+\tan ^{-1} \frac{5}{12}\right)=\square \) (Type an exact answer in simplified form.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the exact value of the expression \( \cos \left(\sin^{-1} \frac{4}{5} + \tan^{-1} \frac{5}{12}\right) \), we will use the cosine addition formula, which states that \[ \cos(a + b) = \cos a \cos b - \sin a \sin b. \] Here, let \( a = \sin^{-1} \frac{4}{5} \) and \( b = \tan^{-1} \frac{5}{12} \). ### Step 1: Calculate \( \cos a \) and \( \sin a \) From \( a = \sin^{-1} \frac{4}{5} \): - We have \( \sin a = \frac{4}{5} \). - To find \( \cos a \), we use the Pythagorean identity \( \cos^2 a + \sin^2 a = 1 \): \[ \cos^2 a = 1 - \sin^2 a = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25}. \] Thus, \[ \cos a = \sqrt{\frac{9}{25}} = \frac{3}{5}. \] ### Step 2: Calculate \( \cos b \) and \( \sin b \) From \( b = \tan^{-1} \frac{5}{12} \): - We can interpret this as a right triangle where the opposite side is \( 5 \) and the adjacent side is \( 12 \). Using the Pythagorean theorem, the hypotenuse \( h \) is: \[ h = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13. \] - Therefore, we have: - \( \sin b = \frac{5}{13} \) - \( \cos b = \frac{12}{13} \) ### Step 3: Combine to find \( \cos(a + b) \) Now substituting into the cosine addition formula: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b. \] Substituting the values: \[ \cos(a + b) = \left(\frac{3}{5}\right)\left(\frac{12}{13}\right) - \left(\frac{4}{5}\right)\left(\frac{5}{13}\right). \] Calculating each term: 1. \( \frac{3}{5} \cdot \frac{12}{13} = \frac{36}{65} \) 2. \( \frac{4}{5} \cdot \frac{5}{13} = \frac{20}{65} \) Now, substituting back into the equation gives: \[ \cos(a + b) = \frac{36}{65} - \frac{20}{65} = \frac{16}{65}. \] Thus, the exact value of the expression is: \[ \boxed{\frac{16}{65}}. \]