Question
upstudy study bank question image url

Find the exact value of the expression. \[ \cos \left(\sin ^{-1} \frac{4}{5}+\tan ^{-1} \frac{5}{12}\right) \] \( \cos \left(\sin ^{-1} \frac{4}{5}+\tan ^{-1} \frac{5}{12}\right)=\square \) (Type an exact answer in simplified form.)

Ask by Mccoy Kelley. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \cos \left(\sin^{-1} \frac{4}{5} + \tan^{-1} \frac{5}{12}\right) = \frac{16}{65} \]

Solution

To find the exact value of the expression \[ \cos \left(\sin^{-1} \frac{4}{5} + \tan^{-1} \frac{5}{12}\right), \] we can use the cosine of a sum formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B. \] Let \( A = \sin^{-1}\frac{4}{5} \) and \( B = \tan^{-1}\frac{5}{12} \). 1. **Determine \(\cos A\) and \(\sin A\):** - Since \( A = \sin^{-1}\frac{4}{5} \), we have \( \sin A = \frac{4}{5} \). - Using the Pythagorean identity, \( \cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5} \). 2. **Determine \(\cos B\) and \(\sin B\):** - Since \( B = \tan^{-1}\frac{5}{12} \), we have \( \tan B = \frac{5}{12} \). - This implies a right triangle with opposite side 5, adjacent side 12, and hypotenuse 13. - Therefore, \( \sin B = \frac{5}{13} \) and \( \cos B = \frac{12}{13} \). 3. **Apply the cosine of a sum formula:** \[ \cos(A + B) = \left(\frac{3}{5}\right) \left(\frac{12}{13}\right) - \left(\frac{4}{5}\right) \left(\frac{5}{13}\right) = \frac{36}{65} - \frac{20}{65} = \frac{16}{65}. \] **Final Answer:** \[ \frac{16}{65} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the exact value of the expression \( \cos \left(\sin^{-1} \frac{4}{5} + \tan^{-1} \frac{5}{12}\right) \), we will use the cosine addition formula, which states that \[ \cos(a + b) = \cos a \cos b - \sin a \sin b. \] Here, let \( a = \sin^{-1} \frac{4}{5} \) and \( b = \tan^{-1} \frac{5}{12} \). ### Step 1: Calculate \( \cos a \) and \( \sin a \) From \( a = \sin^{-1} \frac{4}{5} \): - We have \( \sin a = \frac{4}{5} \). - To find \( \cos a \), we use the Pythagorean identity \( \cos^2 a + \sin^2 a = 1 \): \[ \cos^2 a = 1 - \sin^2 a = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25}. \] Thus, \[ \cos a = \sqrt{\frac{9}{25}} = \frac{3}{5}. \] ### Step 2: Calculate \( \cos b \) and \( \sin b \) From \( b = \tan^{-1} \frac{5}{12} \): - We can interpret this as a right triangle where the opposite side is \( 5 \) and the adjacent side is \( 12 \). Using the Pythagorean theorem, the hypotenuse \( h \) is: \[ h = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13. \] - Therefore, we have: - \( \sin b = \frac{5}{13} \) - \( \cos b = \frac{12}{13} \) ### Step 3: Combine to find \( \cos(a + b) \) Now substituting into the cosine addition formula: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b. \] Substituting the values: \[ \cos(a + b) = \left(\frac{3}{5}\right)\left(\frac{12}{13}\right) - \left(\frac{4}{5}\right)\left(\frac{5}{13}\right). \] Calculating each term: 1. \( \frac{3}{5} \cdot \frac{12}{13} = \frac{36}{65} \) 2. \( \frac{4}{5} \cdot \frac{5}{13} = \frac{20}{65} \) Now, substituting back into the equation gives: \[ \cos(a + b) = \frac{36}{65} - \frac{20}{65} = \frac{16}{65}. \] Thus, the exact value of the expression is: \[ \boxed{\frac{16}{65}}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy