Question
Which of the following expressions is equivalent to \( \sqrt{75 x} \) ? ( \( 5 x)^{\frac{1}{2}} \) ( \( (5 x)^{\frac{75}{2}} \) ( \( 5(3 x)^{\frac{1}{2}} \) D \( 5(25 x)^{\frac{1}{3}} \)
Ask by Stephens Cox. in the United States
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The expression equivalent to \( \sqrt{75x} \) is \( 5(3x)^{\frac{1}{2}} \).
Solution
To determine which expression is equivalent to \( \sqrt{75x} \), let's simplify \( \sqrt{75x} \):
1. **Factor the expression inside the square root:**
\[
75x = 25 \times 3x
\]
2. **Apply the property of square roots that \( \sqrt{a \times b} = \sqrt{a} \times \sqrt{b} \):**
\[
\sqrt{75x} = \sqrt{25 \times 3x} = \sqrt{25} \times \sqrt{3x}
\]
3. **Simplify the square root of 25:**
\[
\sqrt{25} = 5
\]
So,
\[
\sqrt{75x} = 5 \times \sqrt{3x} = 5(3x)^{\frac{1}{2}}
\]
Therefore, the expression \( \sqrt{75x} \) is equivalent to:
**\( 5(3x)^{\frac{1}{2}} \)**
**Answer:**
\( 5(3x)^{\frac{1}{2}} \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
To find the expression equivalent to \( \sqrt{75 x} \), first, simplify \( \sqrt{75} \). Since \( 75 = 25 \times 3 \), we have: \[ \sqrt{75 x} = \sqrt{25 \cdot 3 \cdot x} = \sqrt{25} \cdot \sqrt{3} \cdot \sqrt{x} = 5 \sqrt{3x}. \] Now, let's analyze the given choices: - \( (5x)^{\frac{1}{2}} = \sqrt{5x} \) (not equivalent) - \( (5x)^{\frac{75}{2}} \) (not equivalent) - \( 5(3x)^{\frac{1}{2}} = 5 \sqrt{3x} \) (this one matches!) - \( 5(25x)^{\frac{1}{3}} \) (not equivalent) Thus, the equivalent expression is \( 5(3x)^{\frac{1}{2}} \).