Question
upstudy study bank question image url

338. Točka \( T \) leži na premici skozi točki \( A(1,0,-3) \) in \( B(4,-9,3) \) tako, da točka \( B \) leži med točkama \( A \) in \( T \) ter je \( |A T|:|A B|=7: 3 \). Zapišite koordi- nate točke \( T \).

Ask by Stewart Bartlett. in Slovenia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The coordinates of point \( T \) are \( (8, -21, 11) \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

Najprej izračunajmo vektorsko smernico premice, ki jo določata točki \( A \) in \( B \). Vektorska smernica premice je \( \vec{AB} = B - A = (4-1, -9-0, 3-(-3)) = (3, -9, 6) \). S pomočjo parametrične oblike lahko zapišemo točke na premici: \( \vec{P}(t) = A + t \cdot \vec{AB} = (1, 0, -3) + t(3, -9, 6) = (1 + 3t, -9t, -3 + 6t) \). Ker točka \( B \) leži znotraj razdalje \( |AT|:|AB|=7:3 \), lahko izračunamo dolžino \( |AB| \) in nato dolžine \( |AT| \) in \( |AB| \). Dolžina \( |AB| \) je: \[ |AB| = \sqrt{(4-1)^2 + (-9-0)^2 + (3-(-3))^2} = \sqrt{3^2 + (-9)^2 + 6^2} = \sqrt{9 + 81 + 36} = \sqrt{126} = 3\sqrt{14}. \] Po tej razdalji izračunamo dolžino \( |AT| \): \[ |AT| = \frac{7}{3}|AB| = \frac{7}{3}(3\sqrt{14}) = 7\sqrt{14}. \] Sedaj ugotovimo točko \( T \). Vem, da od točke \( A \) do točke \( B \) (od \( A \) do \( B \)) prepotujemo \( |AB| \). Naredimo lahko linearno kombinacijo, kjer je \( k = \frac{|AB|}{|AT| + |AB|} = \frac{3}{7 + 3} = \frac{3}{10} \). Točka \( T \) se torej izračuna na naslednji način: \[ T = (1 + 3 \cdot \lambda, 0 - 9 \cdot \lambda, -3 + 6 \cdot \lambda), \] kjer \( \lambda = 1 + \frac{7}{10} = 1 + 0.7 = 1.7 \) in dodatno \( \lambda = 1.7 \cdot 10/10 = 17/10 \). Na koncu dobimo koordinate točke \( T \): \[ T = (1 + 3 \cdot 1.7, 0 - 9 \cdot 1.7, -3 + 6 \cdot 1.7) = \left(1 + 5.1, 0 - 15.3, -3 + 10.2\right) = (6.1, -15.3, 7.2). \] Torej so koordinate točke \( T \) \( T(6.1, -15.3, 7.2) \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy