Question
Simplify \( \left(\frac{5}{8} a\right)\left(\frac{3}{7} a\right) \)
Ask by Alexander Salinas. in the United States
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\(\frac{15}{56}a^{2}\)
Solution
To simplify the expression \( \left(\frac{5}{8} a\right)\left(\frac{3}{7} a\right) \), follow these steps:
1. **Multiply the coefficients (numerators and denominators):**
\[
\frac{5}{8} \times \frac{3}{7} = \frac{5 \times 3}{8 \times 7} = \frac{15}{56}
\]
2. **Multiply the variables:**
\[
a \times a = a^2
\]
3. **Combine the results:**
\[
\frac{15}{56} \times a^2 = \frac{15}{56}a^2
\]
So, the simplified form of the expression is:
\[
\frac{15}{56}a^2
\]
**Final Answer:**
\(\dfrac{15}{56}\, a^{2}\)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
To simplify \( \left(\frac{5}{8} a\right)\left(\frac{3}{7} a\right) \), we can multiply the fractions and the variables separately. First, multiply the coefficients: \[ \frac{5}{8} \times \frac{3}{7} = \frac{5 \times 3}{8 \times 7} = \frac{15}{56} \] Next, multiply the \( a \) terms: \[ a \times a = a^2 \] Now, combine both results: \[ \frac{15}{56} a^2 \] So, the simplified expression is \( \frac{15}{56} a^2 \).