Answer
The simplified results are:
1. \( (a + 4b)^2 (a - 4b)^2 = a^4 - 32a^2b^2 + 256b^4 \)
2. \( (a^2 + 4ab + 16b^2)(a^2 - 8ab - 16b^2) = a^4 - 4a^3b - 32a^2b^2 - 192ab^3 - 256b^4 \)
3. \( a^4 - 64ab - 256b^2 \)
Solution
Simplify the expression by following steps:
- step0: :
\(a^{4}-64ab-256b^{2}\)
Expand the expression \( (a + 4b)^2 (a - 4b)^2 \)
Simplify the expression by following steps:
- step0: Calculate:
\(\left(a+4b\right)^{2}\left(a-4b\right)^{2}\)
- step1: Multiply the expression:
\(\left(a^{2}-16b^{2}\right)^{2}\)
- step2: Expand the expression:
\(\left(a^{2}\right)^{2}-2a^{2}\times 16b^{2}+\left(16b^{2}\right)^{2}\)
- step3: Calculate:
\(a^{4}-32a^{2}b^{2}+256b^{4}\)
Expand the expression \( (a^2 + 4ab + 16b^2)(a^2 - 8ab - 16b^2) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(a^{2}+4ab+16b^{2}\right)\left(a^{2}-8ab-16b^{2}\right)\)
- step1: Apply the distributive property:
\(a^{2}\times a^{2}-a^{2}\times 8ab-a^{2}\times 16b^{2}+4aba^{2}-4ab\times 8ab-4ab\times 16b^{2}+16b^{2}a^{2}-16b^{2}\times 8ab-16b^{2}\times 16b^{2}\)
- step2: Multiply the terms:
\(a^{4}-8a^{3}b-16a^{2}b^{2}+4a^{3}b-32a^{2}b^{2}-64ab^{3}+16b^{2}a^{2}-128b^{3}a-256b^{4}\)
- step3: Add the terms:
\(a^{4}-4a^{3}b-32a^{2}b^{2}-192ab^{3}-256b^{4}\)
Let's break down the expressions step by step:
1. **First Expression: \( (a + 4b)^2 (a - 4b)^2 \)**
We can expand this expression using the formula for the difference of squares:
\[
(x+y)(x-y) = x^2 - y^2
\]
Here, let \( x = (a + 4b) \) and \( y = (a - 4b) \). Thus, we have:
\[
(a + 4b)^2 (a - 4b)^2 = ((a + 4b)(a - 4b))^2 = (a^2 - (4b)^2)^2 = (a^2 - 16b^2)^2
\]
Now, expanding \( (a^2 - 16b^2)^2 \):
\[
= a^4 - 32a^2b^2 + 256b^4
\]
2. **Second Expression: \( (a^2 + 4ab + 16b^2)(a^2 - 8ab - 16b^2) \)**
We will expand this expression using the distributive property:
\[
= a^2(a^2 - 8ab - 16b^2) + 4ab(a^2 - 8ab - 16b^2) + 16b^2(a^2 - 8ab - 16b^2)
\]
Expanding each term:
- \( a^2(a^2 - 8ab - 16b^2) = a^4 - 8a^3b - 16a^2b^2 \)
- \( 4ab(a^2 - 8ab - 16b^2) = 4a^3b - 32a^2b^2 - 64ab^3 \)
- \( 16b^2(a^2 - 8ab - 16b^2) = 16a^2b^2 - 128ab^3 - 256b^4 \)
Combining all these terms:
\[
= a^4 - 4a^3b - 32a^2b^2 - 192ab^3 - 256b^4
\]
3. **Third Expression: \( a^4 - 64ab - 256b^2 \)**
This expression is already in its simplest form:
\[
= a^4 - 64ab - 256b^2
\]
### Summary of Results:
1. \( (a + 4b)^2 (a - 4b)^2 = a^4 - 32a^2b^2 + 256b^4 \)
2. \( (a^2 + 4ab + 16b^2)(a^2 - 8ab - 16b^2) = a^4 - 4a^3b - 32a^2b^2 - 192ab^3 - 256b^4 \)
3. \( a^4 - 64ab - 256b^2 \) (already simplified)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution