Question
upstudy study bank question image url

Expand and simplify: \( \begin{array}{ll}\text { (1) } \quad 2 x(3 x-4 y)-\left(7 x^{2}-2 x y\right) & \text { (2) } \quad(5 y+1)^{2}-(3 y+4)(2-3 y) \\ \text { (3) } \quad(2 x+y)^{2}-(3 x-2 y)^{2}+(x-4 y)(x+4 y) \\ \text { (4) } & x^{6}+\left(x^{3}-3 y\right)\left(x^{3}+3 y\right)\end{array} \)

Ask by Pollard Bradley. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( -x^{2} - 6xy \), \( 34y^{2} + 16y - 7 \), \( -4x^{2} + 16xy - 19y^{2} \), \( 2x^{6} - 9y^{2} \)

Solution

Let's expand and simplify each of the given expressions step by step. --- ### **(1)** \( 2x(3x - 4y) - (7x^{2} - 2xy) \) **Step 1: Distribute the terms inside the parentheses.** \[ 2x(3x) + 2x(-4y) - 7x^{2} + 2xy \] **Step 2: Perform the multiplications.** \[ 6x^{2} - 8xy - 7x^{2} + 2xy \] **Step 3: Combine like terms.** \[ (6x^{2} - 7x^{2}) + (-8xy + 2xy) = -x^{2} - 6xy \] **Final Answer:** \[ -x^{2} - 6xy \] --- ### **(2)** \( (5y + 1)^{2} - (3y + 4)(2 - 3y) \) **Step 1: Expand \( (5y + 1)^{2} \).** \[ (5y)^{2} + 2 \cdot 5y \cdot 1 + 1^{2} = 25y^{2} + 10y + 1 \] **Step 2: Expand \( (3y + 4)(2 - 3y) \).** \[ 3y \cdot 2 + 3y \cdot (-3y) + 4 \cdot 2 + 4 \cdot (-3y) = 6y - 9y^{2} + 8 - 12y \] \[ = -9y^{2} - 6y + 8 \] **Step 3: Subtract the second expansion from the first.** \[ 25y^{2} + 10y + 1 - (-9y^{2} - 6y + 8) = 25y^{2} + 10y + 1 + 9y^{2} + 6y - 8 \] **Step 4: Combine like terms.** \[ (25y^{2} + 9y^{2}) + (10y + 6y) + (1 - 8) = 34y^{2} + 16y - 7 \] **Final Answer:** \[ 34y^{2} + 16y - 7 \] --- ### **(3)** \( (2x + y)^{2} - (3x - 2y)^{2} + (x - 4y)(x + 4y) \) **Step 1: Expand each squared term and the product.** \[ (2x + y)^{2} = 4x^{2} + 4xy + y^{2} \] \[ (3x - 2y)^{2} = 9x^{2} - 12xy + 4y^{2} \] \[ (x - 4y)(x + 4y) = x^{2} - 16y^{2} \quad (\text{Difference of squares}) \] **Step 2: Substitute the expansions into the original expression.** \[ (4x^{2} + 4xy + y^{2}) - (9x^{2} - 12xy + 4y^{2}) + (x^{2} - 16y^{2}) \] **Step 3: Distribute the negative sign and combine like terms.** \[ 4x^{2} + 4xy + y^{2} - 9x^{2} + 12xy - 4y^{2} + x^{2} - 16y^{2} \] \[ (4x^{2} - 9x^{2} + x^{2}) + (4xy + 12xy) + (y^{2} - 4y^{2} - 16y^{2}) = -4x^{2} + 16xy - 19y^{2} \] **Final Answer:** \[ -4x^{2} + 16xy - 19y^{2} \] --- ### **(4)** \( x^{6} + (x^{3} - 3y)(x^{3} + 3y) \) **Step 1: Recognize the product as a difference of squares.** \[ (x^{3} - 3y)(x^{3} + 3y) = (x^{3})^{2} - (3y)^{2} = x^{6} - 9y^{2} \] **Step 2: Add \( x^{6} \) to the expanded product.** \[ x^{6} + (x^{6} - 9y^{2}) = 2x^{6} - 9y^{2} \] **Final Answer:** \[ 2x^{6} - 9y^{2} \] --- **Summary of All Results:** 1. **(1)** \( -x^{2} - 6xy \) 2. **(2)** \( 34y^{2} + 16y - 7 \) 3. **(3)** \( -4x^{2} + 16xy - 19y^{2} \) 4. **(4)** \( 2x^{6} - 9y^{2} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Let’s tackle these expansions and simplifications one by one! (1) Starting with the expression: \[ 2x(3x - 4y) - (7x^2 - 2xy) \] First, expand the first part: \[ 2x(3x) - 2x(4y) = 6x^2 - 8xy \] Now, we have: \[ 6x^2 - 8xy - (7x^2 - 2xy) \] Distributing the negative sign: \[ 6x^2 - 8xy - 7x^2 + 2xy \] Now, combine like terms: \[ (6x^2 - 7x^2) + (-8xy + 2xy) = -x^2 - 6xy \] So the simplified form is: \[ -x^2 - 6xy \] (2) Now, let's expand: \[ (5y + 1)^2 - (3y + 4)(2 - 3y) \] First, the square: \[ (5y + 1)^2 = 25y^2 + 10y + 1 \] Now, expand the second part: \[ (3y + 4)(2 - 3y) = 3y(2) + 3y(-3y) + 4(2) + 4(-3y) = 6y - 9y^2 + 8 - 12y \] Combine: \[ -9y^2 - 6y + 8 \] Now substituting it back gives: \[ 25y^2 + 10y + 1 - (-9y^2 - 6y + 8) \] Distributing the negative sign: \[ 25y^2 + 10y + 1 + 9y^2 + 6y - 8 \] Now, combine: \[ (25y^2 + 9y^2) + (10y + 6y) + (1 - 8) = 34y^2 + 16y - 7 \] So the simplified form is: \[ 34y^2 + 16y - 7 \] (3) Next is: \[ (2x + y)^2 - (3x - 2y)^2 + (x - 4y)(x + 4y) \] Using the difference of squares: \[ (2x + y - (3x - 2y))(2x + y + (3x - 2y)) + (x^2 - (4y)^2) \] Calculate the difference: \[ (2x + y - 3x + 2y) = (-x + 3y) \] And, the sum: \[ (2x + y + 3x - 2y) = (5x - y) \] Now, plugging back gives: \[ (-x + 3y)(5x - y) + (x^2 - 16y^2) \] After expanding: \[ -5x^2 + xy + 15xy - 3y^2 + x^2 - 16y^2 \] Now combine like terms: \[ -4x^2 + 16xy - 19y^2 \] (4) Finally, expanding: \[ x^6 + (x^3 - 3y)(x^3 + 3y) \] This simplifies to: \[ x^6 + (x^3)^2 - (3y)^2 \] Which gives: \[ x^6 + x^6 - 9y^2 = 2x^6 - 9y^2 \] So wrapping it all up, we have: 1) \(-x^2 - 6xy\) 2) \(34y^2 + 16y - 7\) 3) \(-4x^2 + 16xy - 19y^2\) 4) \(2x^6 - 9y^2\)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy