Expand and simplify: \( \begin{array}{ll}\text { (1) } \quad 2 x(3 x-4 y)-\left(7 x^{2}-2 x y\right) & \text { (2) } \quad(5 y+1)^{2}-(3 y+4)(2-3 y) \\ \text { (3) } \quad(2 x+y)^{2}-(3 x-2 y)^{2}+(x-4 y)(x+4 y) \\ \text { (4) } & x^{6}+\left(x^{3}-3 y\right)\left(x^{3}+3 y\right)\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Let’s tackle these expansions and simplifications one by one! (1) Starting with the expression: \[ 2x(3x - 4y) - (7x^2 - 2xy) \] First, expand the first part: \[ 2x(3x) - 2x(4y) = 6x^2 - 8xy \] Now, we have: \[ 6x^2 - 8xy - (7x^2 - 2xy) \] Distributing the negative sign: \[ 6x^2 - 8xy - 7x^2 + 2xy \] Now, combine like terms: \[ (6x^2 - 7x^2) + (-8xy + 2xy) = -x^2 - 6xy \] So the simplified form is: \[ -x^2 - 6xy \] (2) Now, let's expand: \[ (5y + 1)^2 - (3y + 4)(2 - 3y) \] First, the square: \[ (5y + 1)^2 = 25y^2 + 10y + 1 \] Now, expand the second part: \[ (3y + 4)(2 - 3y) = 3y(2) + 3y(-3y) + 4(2) + 4(-3y) = 6y - 9y^2 + 8 - 12y \] Combine: \[ -9y^2 - 6y + 8 \] Now substituting it back gives: \[ 25y^2 + 10y + 1 - (-9y^2 - 6y + 8) \] Distributing the negative sign: \[ 25y^2 + 10y + 1 + 9y^2 + 6y - 8 \] Now, combine: \[ (25y^2 + 9y^2) + (10y + 6y) + (1 - 8) = 34y^2 + 16y - 7 \] So the simplified form is: \[ 34y^2 + 16y - 7 \] (3) Next is: \[ (2x + y)^2 - (3x - 2y)^2 + (x - 4y)(x + 4y) \] Using the difference of squares: \[ (2x + y - (3x - 2y))(2x + y + (3x - 2y)) + (x^2 - (4y)^2) \] Calculate the difference: \[ (2x + y - 3x + 2y) = (-x + 3y) \] And, the sum: \[ (2x + y + 3x - 2y) = (5x - y) \] Now, plugging back gives: \[ (-x + 3y)(5x - y) + (x^2 - 16y^2) \] After expanding: \[ -5x^2 + xy + 15xy - 3y^2 + x^2 - 16y^2 \] Now combine like terms: \[ -4x^2 + 16xy - 19y^2 \] (4) Finally, expanding: \[ x^6 + (x^3 - 3y)(x^3 + 3y) \] This simplifies to: \[ x^6 + (x^3)^2 - (3y)^2 \] Which gives: \[ x^6 + x^6 - 9y^2 = 2x^6 - 9y^2 \] So wrapping it all up, we have: 1) \(-x^2 - 6xy\) 2) \(34y^2 + 16y - 7\) 3) \(-4x^2 + 16xy - 19y^2\) 4) \(2x^6 - 9y^2\)