Pregunta
upstudy study bank question image url

Expand and simplify: \( \begin{array}{ll}\text { (1) } \quad 2 x(3 x-4 y)-\left(7 x^{2}-2 x y\right) & \text { (2) } \quad(5 y+1)^{2}-(3 y+4)(2-3 y) \\ \text { (3) } \quad(2 x+y)^{2}-(3 x-2 y)^{2}+(x-4 y)(x+4 y) \\ \text { (4) } & x^{6}+\left(x^{3}-3 y\right)\left(x^{3}+3 y\right)\end{array} \)

Ask by Pollard Bradley. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( -x^{2} - 6xy \), \( 34y^{2} + 16y - 7 \), \( -4x^{2} + 16xy - 19y^{2} \), \( 2x^{6} - 9y^{2} \)

Solución

Let's expand and simplify each of the given expressions step by step. --- ### **(1)** \( 2x(3x - 4y) - (7x^{2} - 2xy) \) **Step 1: Distribute the terms inside the parentheses.** \[ 2x(3x) + 2x(-4y) - 7x^{2} + 2xy \] **Step 2: Perform the multiplications.** \[ 6x^{2} - 8xy - 7x^{2} + 2xy \] **Step 3: Combine like terms.** \[ (6x^{2} - 7x^{2}) + (-8xy + 2xy) = -x^{2} - 6xy \] **Final Answer:** \[ -x^{2} - 6xy \] --- ### **(2)** \( (5y + 1)^{2} - (3y + 4)(2 - 3y) \) **Step 1: Expand \( (5y + 1)^{2} \).** \[ (5y)^{2} + 2 \cdot 5y \cdot 1 + 1^{2} = 25y^{2} + 10y + 1 \] **Step 2: Expand \( (3y + 4)(2 - 3y) \).** \[ 3y \cdot 2 + 3y \cdot (-3y) + 4 \cdot 2 + 4 \cdot (-3y) = 6y - 9y^{2} + 8 - 12y \] \[ = -9y^{2} - 6y + 8 \] **Step 3: Subtract the second expansion from the first.** \[ 25y^{2} + 10y + 1 - (-9y^{2} - 6y + 8) = 25y^{2} + 10y + 1 + 9y^{2} + 6y - 8 \] **Step 4: Combine like terms.** \[ (25y^{2} + 9y^{2}) + (10y + 6y) + (1 - 8) = 34y^{2} + 16y - 7 \] **Final Answer:** \[ 34y^{2} + 16y - 7 \] --- ### **(3)** \( (2x + y)^{2} - (3x - 2y)^{2} + (x - 4y)(x + 4y) \) **Step 1: Expand each squared term and the product.** \[ (2x + y)^{2} = 4x^{2} + 4xy + y^{2} \] \[ (3x - 2y)^{2} = 9x^{2} - 12xy + 4y^{2} \] \[ (x - 4y)(x + 4y) = x^{2} - 16y^{2} \quad (\text{Difference of squares}) \] **Step 2: Substitute the expansions into the original expression.** \[ (4x^{2} + 4xy + y^{2}) - (9x^{2} - 12xy + 4y^{2}) + (x^{2} - 16y^{2}) \] **Step 3: Distribute the negative sign and combine like terms.** \[ 4x^{2} + 4xy + y^{2} - 9x^{2} + 12xy - 4y^{2} + x^{2} - 16y^{2} \] \[ (4x^{2} - 9x^{2} + x^{2}) + (4xy + 12xy) + (y^{2} - 4y^{2} - 16y^{2}) = -4x^{2} + 16xy - 19y^{2} \] **Final Answer:** \[ -4x^{2} + 16xy - 19y^{2} \] --- ### **(4)** \( x^{6} + (x^{3} - 3y)(x^{3} + 3y) \) **Step 1: Recognize the product as a difference of squares.** \[ (x^{3} - 3y)(x^{3} + 3y) = (x^{3})^{2} - (3y)^{2} = x^{6} - 9y^{2} \] **Step 2: Add \( x^{6} \) to the expanded product.** \[ x^{6} + (x^{6} - 9y^{2}) = 2x^{6} - 9y^{2} \] **Final Answer:** \[ 2x^{6} - 9y^{2} \] --- **Summary of All Results:** 1. **(1)** \( -x^{2} - 6xy \) 2. **(2)** \( 34y^{2} + 16y - 7 \) 3. **(3)** \( -4x^{2} + 16xy - 19y^{2} \) 4. **(4)** \( 2x^{6} - 9y^{2} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let’s tackle these expansions and simplifications one by one! (1) Starting with the expression: \[ 2x(3x - 4y) - (7x^2 - 2xy) \] First, expand the first part: \[ 2x(3x) - 2x(4y) = 6x^2 - 8xy \] Now, we have: \[ 6x^2 - 8xy - (7x^2 - 2xy) \] Distributing the negative sign: \[ 6x^2 - 8xy - 7x^2 + 2xy \] Now, combine like terms: \[ (6x^2 - 7x^2) + (-8xy + 2xy) = -x^2 - 6xy \] So the simplified form is: \[ -x^2 - 6xy \] (2) Now, let's expand: \[ (5y + 1)^2 - (3y + 4)(2 - 3y) \] First, the square: \[ (5y + 1)^2 = 25y^2 + 10y + 1 \] Now, expand the second part: \[ (3y + 4)(2 - 3y) = 3y(2) + 3y(-3y) + 4(2) + 4(-3y) = 6y - 9y^2 + 8 - 12y \] Combine: \[ -9y^2 - 6y + 8 \] Now substituting it back gives: \[ 25y^2 + 10y + 1 - (-9y^2 - 6y + 8) \] Distributing the negative sign: \[ 25y^2 + 10y + 1 + 9y^2 + 6y - 8 \] Now, combine: \[ (25y^2 + 9y^2) + (10y + 6y) + (1 - 8) = 34y^2 + 16y - 7 \] So the simplified form is: \[ 34y^2 + 16y - 7 \] (3) Next is: \[ (2x + y)^2 - (3x - 2y)^2 + (x - 4y)(x + 4y) \] Using the difference of squares: \[ (2x + y - (3x - 2y))(2x + y + (3x - 2y)) + (x^2 - (4y)^2) \] Calculate the difference: \[ (2x + y - 3x + 2y) = (-x + 3y) \] And, the sum: \[ (2x + y + 3x - 2y) = (5x - y) \] Now, plugging back gives: \[ (-x + 3y)(5x - y) + (x^2 - 16y^2) \] After expanding: \[ -5x^2 + xy + 15xy - 3y^2 + x^2 - 16y^2 \] Now combine like terms: \[ -4x^2 + 16xy - 19y^2 \] (4) Finally, expanding: \[ x^6 + (x^3 - 3y)(x^3 + 3y) \] This simplifies to: \[ x^6 + (x^3)^2 - (3y)^2 \] Which gives: \[ x^6 + x^6 - 9y^2 = 2x^6 - 9y^2 \] So wrapping it all up, we have: 1) \(-x^2 - 6xy\) 2) \(34y^2 + 16y - 7\) 3) \(-4x^2 + 16xy - 19y^2\) 4) \(2x^6 - 9y^2\)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad