Question
upstudy study bank question image url

6. If \( a+\frac{1}{a}=4 \), what is the value of \( a^{4}+\frac{1}{a^{4}} \) ? 7. If \( m=6, n=7 \), find the value of \( 16\left(m^{2}+n^{2}\right)^{2}+56\left(m^{2}+n^{2}\right)\left(3 m^{2}-2 n^{2}\right)+49\left(3 m^{2}-2 n^{2}\right)^{2} \)

Ask by Chan Dickson. in Bangladesh
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Problem 6:** Given \( a + \frac{1}{a} = 4 \), find \( a^4 + \frac{1}{a^4} \). 1. Square both sides: \[ \left(a + \frac{1}{a}\right)^2 = 16 \implies a^2 + 2 + \frac{1}{a^2} = 16 \implies a^2 + \frac{1}{a^2} = 14 \] 2. Square again: \[ \left(a^2 + \frac{1}{a^2}\right)^2 = 196 \implies a^4 + 2 + \frac{1}{a^4} = 196 \implies a^4 + \frac{1}{a^4} = 194 \] **Answer:** \( a^4 + \frac{1}{a^4} = 194 \) --- **Problem 7:** Given \( m = 6 \) and \( n = 7 \), compute: \[ 16(m^2 + n^2)^2 + 56(m^2 + n^2)(3m^2 - 2n^2) + 49(3m^2 - 2n^2)^2 \] 1. Let \( A = m^2 + n^2 \) and \( B = 3m^2 - 2n^2 \). The expression becomes: \[ 16A^2 + 56AB + 49B^2 = (4A + 7B)^2 \] 2. Substitute \( m = 6 \) and \( n = 7 \): \[ m^2 = 36, \quad n^2 = 49 \] \[ 4A + 7B = 4(36 + 49) + 7(3(36) - 2(49)) = 4(85) + 7(108 - 98) = 340 + 70 = 410 \] 3. Square the result: \[ 410^2 = 168100 \] **Answer:** The value of the expression is 168100.

Solution

**Problem 6:** Given \( a + \frac{1}{a} = 4 \), we want to find \( a^4 + \frac{1}{a^4} \). 1. **Find \( a^2 + \frac{1}{a^2} \):** Square both sides of the given equation: \[ \left(a + \frac{1}{a}\right)^2 = 4^2 \implies a^2 + 2\left(a \cdot \frac{1}{a}\right) + \frac{1}{a^2} = 16 \] Simplifying: \[ a^2 + \frac{1}{a^2} + 2 = 16 \implies a^2 + \frac{1}{a^2} = 14 \] 2. **Find \( a^4 + \frac{1}{a^4} \):** Square \( a^2 + \frac{1}{a^2} \): \[ \left(a^2 + \frac{1}{a^2}\right)^2 = 14^2 \implies a^4 + 2\left(a^2 \cdot \frac{1}{a^2}\right) + \frac{1}{a^4} = 196 \] Simplifying: \[ a^4 + \frac{1}{a^4} + 2 = 196 \implies a^4 + \frac{1}{a^4} = 194 \] **Answer:** \( a^4 + \frac{1}{a^4} = 194 \) --- **Problem 7:** Given \( m = 6 \) and \( n = 7 \), compute: \[ 16(m^2 + n^2)^2 + 56(m^2 + n^2)(3m^2 - 2n^2) + 49(3m^2 - 2n^2)^2 \] 1. **Simplify the Expression:** Let \( A = m^2 + n^2 \) and \( B = 3m^2 - 2n^2 \). The expression becomes: \[ 16A^2 + 56AB + 49B^2 \] Notice that this is a perfect square: \[ 16A^2 + 56AB + 49B^2 = (4A + 7B)^2 \] 2. **Express in Terms of \( m \) and \( n \):** \[ 4A + 7B = 4(m^2 + n^2) + 7(3m^2 - 2n^2) = 4m^2 + 4n^2 + 21m^2 - 14n^2 = 25m^2 - 10n^2 \] 3. **Substitute \( m = 6 \) and \( n = 7 \):** \[ m^2 = 36, \quad n^2 = 49 \] \[ 25m^2 - 10n^2 = 25(36) - 10(49) = 900 - 490 = 410 \] Therefore, the expression becomes: \[ (410)^2 = 168100 \] **Answer:** The value of the expression is 168100.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the value of \( a^{4}+\frac{1}{a^{4}} \) given that \( a+\frac{1}{a}=4 \), we can first find \( a^2 + \frac{1}{a^2} \). Using the identity: \[ \left( a + \frac{1}{a} \right)^{2} = a^{2} + 2 + \frac{1}{a^{2}}, \] we plug in the value we know: \[ 4^{2} = a^{2} + 2 + \frac{1}{a^{2}} \Rightarrow 16 = a^{2} + 2 + \frac{1}{a^{2}} \Rightarrow a^{2} + \frac{1}{a^{2}} = 14. \] Next, we can find \( a^{4} + \frac{1}{a^{4}} \) using the identity: \[ \left( a^{2} + \frac{1}{a^{2}} \right)^{2} = a^{4} + 2 + \frac{1}{a^{4}}. \] Substituting \( a^{2} + \frac{1}{a^{2}} = 14 \): \[ 14^{2} = a^{4} + 2 + \frac{1}{a^{4}} \Rightarrow 196 = a^{4} + 2 + \frac{1}{a^{4}} \Rightarrow a^{4} + \frac{1}{a^{4}} = 194. \] So, the answer is: \[ \boxed{194}. \] --- Now for the expression \( 16\left(m^{2}+n^{2}\right)^{2}+56\left(m^{2}+n^{2}\right)\left(3 m^{2}-2 n^{2}\right)+49\left(3 m^{2}-2 n^{2}\right)^{2} \) when \( m=6 \) and \( n=7 \). First, we calculate: \[ m^{2} + n^{2} = 6^{2} + 7^{2} = 36 + 49 = 85, \] and \[ 3m^{2} - 2n^{2} = 3(6^{2}) - 2(7^{2}) = 3(36) - 2(49) = 108 - 98 = 10. \] Substituting these values into the expression gives: \[ 16(85)^{2} + 56(85)(10) + 49(10)^{2}. \] Now calculating each term: \[ 16 \times 7225 + 56 \times 850 + 49 \times 100. \] Calculating each part: 1. \( 16 \times 7225 = 115600 \), 2. \( 56 \times 850 = 47600 \), 3. \( 49 \times 100 = 4900 \). Adding these results: \[ 115600 + 47600 + 4900 = 168100. \] Thus, the final result is: \[ \boxed{168100}. \]

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy