Pregunta
upstudy study bank question image url

6. If \( a+\frac{1}{a}=4 \), what is the value of \( a^{4}+\frac{1}{a^{4}} \) ? 7. If \( m=6, n=7 \), find the value of \( 16\left(m^{2}+n^{2}\right)^{2}+56\left(m^{2}+n^{2}\right)\left(3 m^{2}-2 n^{2}\right)+49\left(3 m^{2}-2 n^{2}\right)^{2} \)

Ask by Chan Dickson. in Bangladesh
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 6:** Given \( a + \frac{1}{a} = 4 \), find \( a^4 + \frac{1}{a^4} \). 1. Square both sides: \[ \left(a + \frac{1}{a}\right)^2 = 16 \implies a^2 + 2 + \frac{1}{a^2} = 16 \implies a^2 + \frac{1}{a^2} = 14 \] 2. Square again: \[ \left(a^2 + \frac{1}{a^2}\right)^2 = 196 \implies a^4 + 2 + \frac{1}{a^4} = 196 \implies a^4 + \frac{1}{a^4} = 194 \] **Answer:** \( a^4 + \frac{1}{a^4} = 194 \) --- **Problem 7:** Given \( m = 6 \) and \( n = 7 \), compute: \[ 16(m^2 + n^2)^2 + 56(m^2 + n^2)(3m^2 - 2n^2) + 49(3m^2 - 2n^2)^2 \] 1. Let \( A = m^2 + n^2 \) and \( B = 3m^2 - 2n^2 \). The expression becomes: \[ 16A^2 + 56AB + 49B^2 = (4A + 7B)^2 \] 2. Substitute \( m = 6 \) and \( n = 7 \): \[ m^2 = 36, \quad n^2 = 49 \] \[ 4A + 7B = 4(36 + 49) + 7(3(36) - 2(49)) = 4(85) + 7(108 - 98) = 340 + 70 = 410 \] 3. Square the result: \[ 410^2 = 168100 \] **Answer:** The value of the expression is 168100.

Solución

**Problem 6:** Given \( a + \frac{1}{a} = 4 \), we want to find \( a^4 + \frac{1}{a^4} \). 1. **Find \( a^2 + \frac{1}{a^2} \):** Square both sides of the given equation: \[ \left(a + \frac{1}{a}\right)^2 = 4^2 \implies a^2 + 2\left(a \cdot \frac{1}{a}\right) + \frac{1}{a^2} = 16 \] Simplifying: \[ a^2 + \frac{1}{a^2} + 2 = 16 \implies a^2 + \frac{1}{a^2} = 14 \] 2. **Find \( a^4 + \frac{1}{a^4} \):** Square \( a^2 + \frac{1}{a^2} \): \[ \left(a^2 + \frac{1}{a^2}\right)^2 = 14^2 \implies a^4 + 2\left(a^2 \cdot \frac{1}{a^2}\right) + \frac{1}{a^4} = 196 \] Simplifying: \[ a^4 + \frac{1}{a^4} + 2 = 196 \implies a^4 + \frac{1}{a^4} = 194 \] **Answer:** \( a^4 + \frac{1}{a^4} = 194 \) --- **Problem 7:** Given \( m = 6 \) and \( n = 7 \), compute: \[ 16(m^2 + n^2)^2 + 56(m^2 + n^2)(3m^2 - 2n^2) + 49(3m^2 - 2n^2)^2 \] 1. **Simplify the Expression:** Let \( A = m^2 + n^2 \) and \( B = 3m^2 - 2n^2 \). The expression becomes: \[ 16A^2 + 56AB + 49B^2 \] Notice that this is a perfect square: \[ 16A^2 + 56AB + 49B^2 = (4A + 7B)^2 \] 2. **Express in Terms of \( m \) and \( n \):** \[ 4A + 7B = 4(m^2 + n^2) + 7(3m^2 - 2n^2) = 4m^2 + 4n^2 + 21m^2 - 14n^2 = 25m^2 - 10n^2 \] 3. **Substitute \( m = 6 \) and \( n = 7 \):** \[ m^2 = 36, \quad n^2 = 49 \] \[ 25m^2 - 10n^2 = 25(36) - 10(49) = 900 - 490 = 410 \] Therefore, the expression becomes: \[ (410)^2 = 168100 \] **Answer:** The value of the expression is 168100.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the value of \( a^{4}+\frac{1}{a^{4}} \) given that \( a+\frac{1}{a}=4 \), we can first find \( a^2 + \frac{1}{a^2} \). Using the identity: \[ \left( a + \frac{1}{a} \right)^{2} = a^{2} + 2 + \frac{1}{a^{2}}, \] we plug in the value we know: \[ 4^{2} = a^{2} + 2 + \frac{1}{a^{2}} \Rightarrow 16 = a^{2} + 2 + \frac{1}{a^{2}} \Rightarrow a^{2} + \frac{1}{a^{2}} = 14. \] Next, we can find \( a^{4} + \frac{1}{a^{4}} \) using the identity: \[ \left( a^{2} + \frac{1}{a^{2}} \right)^{2} = a^{4} + 2 + \frac{1}{a^{4}}. \] Substituting \( a^{2} + \frac{1}{a^{2}} = 14 \): \[ 14^{2} = a^{4} + 2 + \frac{1}{a^{4}} \Rightarrow 196 = a^{4} + 2 + \frac{1}{a^{4}} \Rightarrow a^{4} + \frac{1}{a^{4}} = 194. \] So, the answer is: \[ \boxed{194}. \] --- Now for the expression \( 16\left(m^{2}+n^{2}\right)^{2}+56\left(m^{2}+n^{2}\right)\left(3 m^{2}-2 n^{2}\right)+49\left(3 m^{2}-2 n^{2}\right)^{2} \) when \( m=6 \) and \( n=7 \). First, we calculate: \[ m^{2} + n^{2} = 6^{2} + 7^{2} = 36 + 49 = 85, \] and \[ 3m^{2} - 2n^{2} = 3(6^{2}) - 2(7^{2}) = 3(36) - 2(49) = 108 - 98 = 10. \] Substituting these values into the expression gives: \[ 16(85)^{2} + 56(85)(10) + 49(10)^{2}. \] Now calculating each term: \[ 16 \times 7225 + 56 \times 850 + 49 \times 100. \] Calculating each part: 1. \( 16 \times 7225 = 115600 \), 2. \( 56 \times 850 = 47600 \), 3. \( 49 \times 100 = 4900 \). Adding these results: \[ 115600 + 47600 + 4900 = 168100. \] Thus, the final result is: \[ \boxed{168100}. \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad