6. If \( a+\frac{1}{a}=4 \), what is the value of \( a^{4}+\frac{1}{a^{4}} \) ? 7. If \( m=6, n=7 \), find the value of \( 16\left(m^{2}+n^{2}\right)^{2}+56\left(m^{2}+n^{2}\right)\left(3 m^{2}-2 n^{2}\right)+49\left(3 m^{2}-2 n^{2}\right)^{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the value of \( a^{4}+\frac{1}{a^{4}} \) given that \( a+\frac{1}{a}=4 \), we can first find \( a^2 + \frac{1}{a^2} \). Using the identity: \[ \left( a + \frac{1}{a} \right)^{2} = a^{2} + 2 + \frac{1}{a^{2}}, \] we plug in the value we know: \[ 4^{2} = a^{2} + 2 + \frac{1}{a^{2}} \Rightarrow 16 = a^{2} + 2 + \frac{1}{a^{2}} \Rightarrow a^{2} + \frac{1}{a^{2}} = 14. \] Next, we can find \( a^{4} + \frac{1}{a^{4}} \) using the identity: \[ \left( a^{2} + \frac{1}{a^{2}} \right)^{2} = a^{4} + 2 + \frac{1}{a^{4}}. \] Substituting \( a^{2} + \frac{1}{a^{2}} = 14 \): \[ 14^{2} = a^{4} + 2 + \frac{1}{a^{4}} \Rightarrow 196 = a^{4} + 2 + \frac{1}{a^{4}} \Rightarrow a^{4} + \frac{1}{a^{4}} = 194. \] So, the answer is: \[ \boxed{194}. \] --- Now for the expression \( 16\left(m^{2}+n^{2}\right)^{2}+56\left(m^{2}+n^{2}\right)\left(3 m^{2}-2 n^{2}\right)+49\left(3 m^{2}-2 n^{2}\right)^{2} \) when \( m=6 \) and \( n=7 \). First, we calculate: \[ m^{2} + n^{2} = 6^{2} + 7^{2} = 36 + 49 = 85, \] and \[ 3m^{2} - 2n^{2} = 3(6^{2}) - 2(7^{2}) = 3(36) - 2(49) = 108 - 98 = 10. \] Substituting these values into the expression gives: \[ 16(85)^{2} + 56(85)(10) + 49(10)^{2}. \] Now calculating each term: \[ 16 \times 7225 + 56 \times 850 + 49 \times 100. \] Calculating each part: 1. \( 16 \times 7225 = 115600 \), 2. \( 56 \times 850 = 47600 \), 3. \( 49 \times 100 = 4900 \). Adding these results: \[ 115600 + 47600 + 4900 = 168100. \] Thus, the final result is: \[ \boxed{168100}. \]