Answer
After about 23 years, the populations of both communities will be approximately equal.
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(10000\times 1.01^{x}=8000\times 1.02^{x}\)
- step1: Convert the expressions:
\(10000\left(\frac{101}{100}\right)^{x}=8000\left(\frac{51}{50}\right)^{x}\)
- step2: Multiply both sides:
\(\frac{1}{10000}\times 10000\left(\frac{101}{100}\right)^{x}=\frac{1}{10000}\times 8000\left(\frac{51}{50}\right)^{x}\)
- step3: Calculate:
\(\left(\frac{101}{100}\right)^{x}=\frac{4}{5}\left(\frac{51}{50}\right)^{x}\)
- step4: Divide both sides:
\(\frac{\left(\frac{101}{100}\right)^{x}}{\left(\frac{51}{50}\right)^{x}}=\frac{4}{5}\)
- step5: Evaluate:
\(\left(\frac{101}{102}\right)^{x}=\frac{4}{5}\)
- step6: Take the logarithm of both sides:
\(\log_{\frac{101}{102}}{\left(\left(\frac{101}{102}\right)^{x}\right)}=\log_{\frac{101}{102}}{\left(\frac{4}{5}\right)}\)
- step7: Evaluate the logarithm:
\(x=\log_{\frac{101}{102}}{\left(\frac{4}{5}\right)}\)
- step8: Simplify:
\(x=2\log_{\frac{101}{102}}{\left(2\right)}-\log_{\frac{101}{102}}{\left(5\right)}\)
To find the time \( \hat{v} \) in years when the populations of the two communities will be approximately equal, we start with the given equations:
1. \( y = 10,000(1.01)^{x} \) (for the first community)
2. \( y = 8,000(1.02)^{x} \) (for the second community)
We set these two equations equal to each other to find \( x \):
\[
10,000(1.01)^{x} = 8,000(1.02)^{x}
\]
Next, we can simplify this equation:
\[
\frac{10,000}{8,000} = \frac{(1.02)^{x}}{(1.01)^{x}}
\]
This simplifies to:
\[
1.25 = \left(\frac{1.02}{1.01}\right)^{x}
\]
Taking the logarithm of both sides gives us:
\[
\log(1.25) = x \cdot \log\left(\frac{1.02}{1.01}\right)
\]
Solving for \( x \):
\[
x = \frac{\log(1.25)}{\log\left(\frac{1.02}{1.01}\right)}
\]
Using the change of base formula, we can express this as:
\[
x = 2\log_{\frac{101}{102}}(2) - \log_{\frac{101}{102}}(5)
\]
Now, we can calculate the approximate value of \( x \) to find \( \hat{v} \).
Let's calculate \( \hat{v} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2\log_{10}{\left(2\right)}}{\left(\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}\right)}-\frac{\log_{10}{\left(5\right)}}{\left(\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}\right)}\)
- step1: Remove the parentheses:
\(\frac{2\log_{10}{\left(2\right)}}{\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}}\)
- step2: Use the logarithm product rule:
\(\frac{2\log_{10}{\left(2\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}}\)
- step3: Use the logarithm product rule:
\(\frac{2\log_{10}{\left(2\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}\)
- step4: Use the logarithm base change rule:
\(2\log_{\frac{101}{102}}{\left(2\right)}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}\)
- step5: Use the logarithm base change rule:
\(2\log_{\frac{101}{102}}{\left(2\right)}-\log_{\frac{101}{102}}{\left(5\right)}\)
After calculating, we find that \( \hat{v} \approx 22.65 \) years.
Thus, we can complete the statement:
After about \( \hat{v} \) years, the population of each community will be approximately equal.
To summarize:
- \( \hat{v} \approx 22.65 \) years.
This means that after approximately 23 years, the populations of the two communities will be roughly the same.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution