Responder
After about 23 years, the populations of both communities will be approximately equal.
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(10000\times 1.01^{x}=8000\times 1.02^{x}\)
- step1: Convert the expressions:
\(10000\left(\frac{101}{100}\right)^{x}=8000\left(\frac{51}{50}\right)^{x}\)
- step2: Multiply both sides:
\(\frac{1}{10000}\times 10000\left(\frac{101}{100}\right)^{x}=\frac{1}{10000}\times 8000\left(\frac{51}{50}\right)^{x}\)
- step3: Calculate:
\(\left(\frac{101}{100}\right)^{x}=\frac{4}{5}\left(\frac{51}{50}\right)^{x}\)
- step4: Divide both sides:
\(\frac{\left(\frac{101}{100}\right)^{x}}{\left(\frac{51}{50}\right)^{x}}=\frac{4}{5}\)
- step5: Evaluate:
\(\left(\frac{101}{102}\right)^{x}=\frac{4}{5}\)
- step6: Take the logarithm of both sides:
\(\log_{\frac{101}{102}}{\left(\left(\frac{101}{102}\right)^{x}\right)}=\log_{\frac{101}{102}}{\left(\frac{4}{5}\right)}\)
- step7: Evaluate the logarithm:
\(x=\log_{\frac{101}{102}}{\left(\frac{4}{5}\right)}\)
- step8: Simplify:
\(x=2\log_{\frac{101}{102}}{\left(2\right)}-\log_{\frac{101}{102}}{\left(5\right)}\)
To find the time \( \hat{v} \) in years when the populations of the two communities will be approximately equal, we start with the given equations:
1. \( y = 10,000(1.01)^{x} \) (for the first community)
2. \( y = 8,000(1.02)^{x} \) (for the second community)
We set these two equations equal to each other to find \( x \):
\[
10,000(1.01)^{x} = 8,000(1.02)^{x}
\]
Next, we can simplify this equation:
\[
\frac{10,000}{8,000} = \frac{(1.02)^{x}}{(1.01)^{x}}
\]
This simplifies to:
\[
1.25 = \left(\frac{1.02}{1.01}\right)^{x}
\]
Taking the logarithm of both sides gives us:
\[
\log(1.25) = x \cdot \log\left(\frac{1.02}{1.01}\right)
\]
Solving for \( x \):
\[
x = \frac{\log(1.25)}{\log\left(\frac{1.02}{1.01}\right)}
\]
Using the change of base formula, we can express this as:
\[
x = 2\log_{\frac{101}{102}}(2) - \log_{\frac{101}{102}}(5)
\]
Now, we can calculate the approximate value of \( x \) to find \( \hat{v} \).
Let's calculate \( \hat{v} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2\log_{10}{\left(2\right)}}{\left(\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}\right)}-\frac{\log_{10}{\left(5\right)}}{\left(\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}\right)}\)
- step1: Remove the parentheses:
\(\frac{2\log_{10}{\left(2\right)}}{\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}}\)
- step2: Use the logarithm product rule:
\(\frac{2\log_{10}{\left(2\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}}\)
- step3: Use the logarithm product rule:
\(\frac{2\log_{10}{\left(2\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}\)
- step4: Use the logarithm base change rule:
\(2\log_{\frac{101}{102}}{\left(2\right)}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}\)
- step5: Use the logarithm base change rule:
\(2\log_{\frac{101}{102}}{\left(2\right)}-\log_{\frac{101}{102}}{\left(5\right)}\)
After calculating, we find that \( \hat{v} \approx 22.65 \) years.
Thus, we can complete the statement:
After about \( \hat{v} \) years, the population of each community will be approximately equal.
To summarize:
- \( \hat{v} \approx 22.65 \) years.
This means that after approximately 23 years, the populations of the two communities will be roughly the same.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución