Pregunta
upstudy study bank question image url

9 Select the correct answer from each drop-down menu. City officials use the given system of equations to estimate the population of two neighboring communities, where \( y \) is the population and \( x \) is the time, in years. \( y=10,000(1.01)^{x} \) \( y=8,000(1.02)^{x} \) Use this system to complete the statement. After about \( \hat{v} \) years, the population of each community will be approximately

Ask by Klein Warner. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After about 23 years, the populations of both communities will be approximately equal.

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(10000\times 1.01^{x}=8000\times 1.02^{x}\) - step1: Convert the expressions: \(10000\left(\frac{101}{100}\right)^{x}=8000\left(\frac{51}{50}\right)^{x}\) - step2: Multiply both sides: \(\frac{1}{10000}\times 10000\left(\frac{101}{100}\right)^{x}=\frac{1}{10000}\times 8000\left(\frac{51}{50}\right)^{x}\) - step3: Calculate: \(\left(\frac{101}{100}\right)^{x}=\frac{4}{5}\left(\frac{51}{50}\right)^{x}\) - step4: Divide both sides: \(\frac{\left(\frac{101}{100}\right)^{x}}{\left(\frac{51}{50}\right)^{x}}=\frac{4}{5}\) - step5: Evaluate: \(\left(\frac{101}{102}\right)^{x}=\frac{4}{5}\) - step6: Take the logarithm of both sides: \(\log_{\frac{101}{102}}{\left(\left(\frac{101}{102}\right)^{x}\right)}=\log_{\frac{101}{102}}{\left(\frac{4}{5}\right)}\) - step7: Evaluate the logarithm: \(x=\log_{\frac{101}{102}}{\left(\frac{4}{5}\right)}\) - step8: Simplify: \(x=2\log_{\frac{101}{102}}{\left(2\right)}-\log_{\frac{101}{102}}{\left(5\right)}\) To find the time \( \hat{v} \) in years when the populations of the two communities will be approximately equal, we start with the given equations: 1. \( y = 10,000(1.01)^{x} \) (for the first community) 2. \( y = 8,000(1.02)^{x} \) (for the second community) We set these two equations equal to each other to find \( x \): \[ 10,000(1.01)^{x} = 8,000(1.02)^{x} \] Next, we can simplify this equation: \[ \frac{10,000}{8,000} = \frac{(1.02)^{x}}{(1.01)^{x}} \] This simplifies to: \[ 1.25 = \left(\frac{1.02}{1.01}\right)^{x} \] Taking the logarithm of both sides gives us: \[ \log(1.25) = x \cdot \log\left(\frac{1.02}{1.01}\right) \] Solving for \( x \): \[ x = \frac{\log(1.25)}{\log\left(\frac{1.02}{1.01}\right)} \] Using the change of base formula, we can express this as: \[ x = 2\log_{\frac{101}{102}}(2) - \log_{\frac{101}{102}}(5) \] Now, we can calculate the approximate value of \( x \) to find \( \hat{v} \). Let's calculate \( \hat{v} \). Calculate the value by following steps: - step0: Calculate: \(\frac{2\log_{10}{\left(2\right)}}{\left(\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}\right)}-\frac{\log_{10}{\left(5\right)}}{\left(\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}\right)}\) - step1: Remove the parentheses: \(\frac{2\log_{10}{\left(2\right)}}{\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}}\) - step2: Use the logarithm product rule: \(\frac{2\log_{10}{\left(2\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(101\right)}-\log_{10}{\left(102\right)}}\) - step3: Use the logarithm product rule: \(\frac{2\log_{10}{\left(2\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}\) - step4: Use the logarithm base change rule: \(2\log_{\frac{101}{102}}{\left(2\right)}-\frac{\log_{10}{\left(5\right)}}{\log_{10}{\left(\frac{101}{102}\right)}}\) - step5: Use the logarithm base change rule: \(2\log_{\frac{101}{102}}{\left(2\right)}-\log_{\frac{101}{102}}{\left(5\right)}\) After calculating, we find that \( \hat{v} \approx 22.65 \) years. Thus, we can complete the statement: After about \( \hat{v} \) years, the population of each community will be approximately equal. To summarize: - \( \hat{v} \approx 22.65 \) years. This means that after approximately 23 years, the populations of the two communities will be roughly the same.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The system of equations represents two communities with their populations growing at different rates. To find when the populations will be approximately equal, you can set the two equations equal to each other: \( 10,000(1.01)^{x} = 8,000(1.02)^{x} \). Solving this equation involves some logarithmic manipulation. After calculating, you may find that after approximately \( \hat{v} \approx 81.67 \) years, the populations reach roughly equal numbers! At that time, each community will have approximately \( 10,000(1.01)^{81.67} \) or equivalently \( 8,000(1.02)^{81.67} \). Keep in mind, this method is fantastic for modeling growth trends in real-life scenarios!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad