Answer
Here are the solutions to the systems of equations:
1. \( (x, y) = (6, 0) \)
2. \( (x, y) = (0, 2) \)
3. \( (x, y) = (21, -3) \)
4. \( (x, y) = \left(2, -\frac{7}{5}\right) \)
5. \( (x, y) = (-3, 5) \)
Solution
Sure, let's solve each of the given systems of equations step by step. We'll find the values of \( x \) and \( y \) that satisfy each system.
---
### **System 1**
\[
\begin{cases}
x + 3y = 6 \\
2x - 3y = 12
\end{cases}
\]
**Solution:**
1. **Add the two equations to eliminate \( y \):**
\[
(x + 2x) + (3y - 3y) = 6 + 12 \\
3x = 18 \\
x = 6
\]
2. **Substitute \( x = 6 \) into the first equation:**
\[
6 + 3y = 6 \\
3y = 0 \\
y = 0
\]
**Solution:** \( \boxed{(x, y) = (6,\ 0)} \)
---
### **System 2**
\[
\begin{cases}
x + 2y = 4 \\
-3x + y = 2
\end{cases}
\]
**Solution:**
1. **Express \( x \) from the first equation:**
\[
x = 4 - 2y
\]
2. **Substitute \( x = 4 - 2y \) into the second equation:**
\[
-3(4 - 2y) + y = 2 \\
-12 + 6y + y = 2 \\
7y = 14 \\
y = 2
\]
3. **Find \( x \):**
\[
x = 4 - 2(2) = 0
\]
**Solution:** \( \boxed{(x, y) = (0,\ 2)} \)
---
### **System 3**
\[
\begin{cases}
x + 3y = 12 \\
2x + y = 39
\end{cases}
\]
**Solution:**
1. **Express \( x \) from the first equation:**
\[
x = 12 - 3y
\]
2. **Substitute \( x = 12 - 3y \) into the second equation:**
\[
2(12 - 3y) + y = 39 \\
24 - 6y + y = 39 \\
-5y = 15 \\
y = -3
\]
3. **Find \( x \):**
\[
x = 12 - 3(-3) = 12 + 9 = 21
\]
**Solution:** \( \boxed{(x, y) = (21,\ -3)} \)
---
### **System 4**
\[
\begin{cases}
4x - 5y = 15 \\
2x - 5y = 11
\end{cases}
\]
**Solution:**
1. **Subtract the second equation from the first to eliminate \( y \):**
\[
(4x - 2x) + (-5y + 5y) = 15 - 11 \\
2x = 4 \\
x = 2
\]
2. **Substitute \( x = 2 \) into the second equation:**
\[
2(2) - 5y = 11 \\
4 - 5y = 11 \\
-5y = 7 \\
y = -\frac{7}{5} \quad \text{or} \quad y = -1.4
\]
**Solution:** \( \boxed{(x, y) = \left(2,\ -\frac{7}{5}\right)} \)
---
### **System 5**
\[
\begin{cases}
4x + 2y = -2 \\
x + 3y = 12
\end{cases}
\]
**Solution:**
1. **Express \( x \) from the second equation:**
\[
x = 12 - 3y
\]
2. **Substitute \( x = 12 - 3y \) into the first equation:**
\[
4(12 - 3y) + 2y = -2 \\
48 - 12y + 2y = -2 \\
-10y = -50 \\
y = 5
\]
3. **Find \( x \):**
\[
x = 12 - 3(5) = 12 - 15 = -3
\]
**Solution:** \( \boxed{(x, y) = (-3,\ 5)} \)
---
Feel free to reach out if you need further assistance with these systems or any other questions!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution