Pregunta
upstudy study bank question image url

system of equations. \( x \) to the corresponding \[ \begin{array}{l} x+3 y=6 \\ 2 x-3 y=12 \end{array} \] \( x+2 y=4 \) \( -3 x+y=2 \) \( \square \) \( x+3 y=12 \) \( 2 x+y=39 \) \( \square \) \( 4 x-5 y=15 \) \( 2 x-5 y=11 \) \( \square \) \( 4 x+2 y=-2 \) \[ x+3 y=12 \] \( \square \)

Ask by Carter Little. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the solutions to the systems of equations: 1. \( (x, y) = (6, 0) \) 2. \( (x, y) = (0, 2) \) 3. \( (x, y) = (21, -3) \) 4. \( (x, y) = \left(2, -\frac{7}{5}\right) \) 5. \( (x, y) = (-3, 5) \)

Solución

Sure, let's solve each of the given systems of equations step by step. We'll find the values of \( x \) and \( y \) that satisfy each system. --- ### **System 1** \[ \begin{cases} x + 3y = 6 \\ 2x - 3y = 12 \end{cases} \] **Solution:** 1. **Add the two equations to eliminate \( y \):** \[ (x + 2x) + (3y - 3y) = 6 + 12 \\ 3x = 18 \\ x = 6 \] 2. **Substitute \( x = 6 \) into the first equation:** \[ 6 + 3y = 6 \\ 3y = 0 \\ y = 0 \] **Solution:** \( \boxed{(x, y) = (6,\ 0)} \) --- ### **System 2** \[ \begin{cases} x + 2y = 4 \\ -3x + y = 2 \end{cases} \] **Solution:** 1. **Express \( x \) from the first equation:** \[ x = 4 - 2y \] 2. **Substitute \( x = 4 - 2y \) into the second equation:** \[ -3(4 - 2y) + y = 2 \\ -12 + 6y + y = 2 \\ 7y = 14 \\ y = 2 \] 3. **Find \( x \):** \[ x = 4 - 2(2) = 0 \] **Solution:** \( \boxed{(x, y) = (0,\ 2)} \) --- ### **System 3** \[ \begin{cases} x + 3y = 12 \\ 2x + y = 39 \end{cases} \] **Solution:** 1. **Express \( x \) from the first equation:** \[ x = 12 - 3y \] 2. **Substitute \( x = 12 - 3y \) into the second equation:** \[ 2(12 - 3y) + y = 39 \\ 24 - 6y + y = 39 \\ -5y = 15 \\ y = -3 \] 3. **Find \( x \):** \[ x = 12 - 3(-3) = 12 + 9 = 21 \] **Solution:** \( \boxed{(x, y) = (21,\ -3)} \) --- ### **System 4** \[ \begin{cases} 4x - 5y = 15 \\ 2x - 5y = 11 \end{cases} \] **Solution:** 1. **Subtract the second equation from the first to eliminate \( y \):** \[ (4x - 2x) + (-5y + 5y) = 15 - 11 \\ 2x = 4 \\ x = 2 \] 2. **Substitute \( x = 2 \) into the second equation:** \[ 2(2) - 5y = 11 \\ 4 - 5y = 11 \\ -5y = 7 \\ y = -\frac{7}{5} \quad \text{or} \quad y = -1.4 \] **Solution:** \( \boxed{(x, y) = \left(2,\ -\frac{7}{5}\right)} \) --- ### **System 5** \[ \begin{cases} 4x + 2y = -2 \\ x + 3y = 12 \end{cases} \] **Solution:** 1. **Express \( x \) from the second equation:** \[ x = 12 - 3y \] 2. **Substitute \( x = 12 - 3y \) into the first equation:** \[ 4(12 - 3y) + 2y = -2 \\ 48 - 12y + 2y = -2 \\ -10y = -50 \\ y = 5 \] 3. **Find \( x \):** \[ x = 12 - 3(5) = 12 - 15 = -3 \] **Solution:** \( \boxed{(x, y) = (-3,\ 5)} \) --- Feel free to reach out if you need further assistance with these systems or any other questions!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve a system of equations, one can use methods such as substitution or elimination. For example, with the first set \( x + 3y = 6 \) and \( 2x - 3y = 12 \), you can isolate \( x \) in the first equation and substitute into the second to find the values of \( x \) and \( y \). In real-world terms, systems of equations are super handy! For instance, if you run a coffee shop, you might want to know how many cups of different drinks to make based on sales forecasts—the equations can represent those relationships. Solving them helps manage resources effectively and optimize profits!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad