Question
upstudy study bank question image url

-5. \( |5 x-2|+3>4 \)

Ask by Sanders Salinas. in Argentina
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La solución de la desigualdad \( |5x - 2| + 3 > 4 \) es \( x < \frac{1}{5} \) o \( x > \frac{3}{5} \).

Solution

Para resolver la desigualdad \( |5x - 2| + 3 > 4 \), seguimos los siguientes pasos: 1. **Aislar el valor absoluto:** \[ |5x - 2| + 3 > 4 \\ |5x - 2| > 4 - 3 \\ |5x - 2| > 1 \] 2. **Resolver la desigualdad del valor absoluto:** La desigualdad \( |A| > B \) donde \( B > 0 \) se resuelve como: \[ A > B \quad \text{o} \quad A < -B \] Aplicando esto a nuestra desigualdad: \[ 5x - 2 > 1 \quad \text{o} \quad 5x - 2 < -1 \] 3. **Resolver cada una de las desigualdades individuales:** - **Primera desigualdad:** \[ 5x - 2 > 1 \\ 5x > 1 + 2 \\ 5x > 3 \\ x > \frac{3}{5} \] - **Segunda desigualdad:** \[ 5x - 2 < -1 \\ 5x < -1 + 2 \\ 5x < 1 \\ x < \frac{1}{5} \] 4. **Expresar la solución final:** La solución de la desigualdad original es la unión de las soluciones obtenidas: \[ x < \frac{1}{5} \quad \text{o} \quad x > \frac{3}{5} \] En notación de intervalos, esto se expresa como: \[ (-\infty, \frac{1}{5}) \cup (\frac{3}{5}, \infty) \] **Conclusión:** La solución de la desigualdad \( |5x - 2| + 3 > 4 \) es: \[ x < \frac{1}{5} \quad \text{o} \quad x > \frac{3}{5} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the inequality \( |5x - 2| + 3 > 4 \), first, simplify it by subtracting 3 from both sides. This gives us \( |5x - 2| > 1 \). Now, we split it into two cases: 1. \( 5x - 2 > 1 \) which simplifies to \( 5x > 3 \) or \( x > \frac{3}{5} \). 2. \( 5x - 2 < -1 \) which simplifies to \( 5x < 1 \) or \( x < \frac{1}{5} \). Therefore, the solution to the inequality is \( x < \frac{1}{5} \) or \( x > \frac{3}{5} \). Now, you can visualize it on a number line, marking the critical points at \( \frac{1}{5} \) and \( \frac{3}{5} \) and noting which regions satisfy the inequality!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy