-5. \( |5 x-2|+3>4 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the inequality \( |5x - 2| + 3 > 4 \), first, simplify it by subtracting 3 from both sides. This gives us \( |5x - 2| > 1 \). Now, we split it into two cases: 1. \( 5x - 2 > 1 \) which simplifies to \( 5x > 3 \) or \( x > \frac{3}{5} \). 2. \( 5x - 2 < -1 \) which simplifies to \( 5x < 1 \) or \( x < \frac{1}{5} \). Therefore, the solution to the inequality is \( x < \frac{1}{5} \) or \( x > \frac{3}{5} \). Now, you can visualize it on a number line, marking the critical points at \( \frac{1}{5} \) and \( \frac{3}{5} \) and noting which regions satisfy the inequality!