Question
upstudy study bank question image url

En los ejercicios 23 a 26, encontrar los límites. 23. \( f(x)=5-x, g(x)=x^{3} \) a) \( \lim _{x \rightarrow 1} f(x) \) b) \( \lim _{x \rightarrow 4} g(x) \) c) \( \lim _{x \rightarrow 1} g(f(x)) \) 24. \( f(x)=x+7, g(x)=x^{2} \) a) \( \lim _{x \rightarrow-3} f(x) \) b) \( \lim _{x \rightarrow 4} g(x) \) c) \( \lim _{x \rightarrow-3} g(f(x)) \) 25. \( f(x)=4-x^{2}, g(x)=\sqrt{x+1} \) a) \( \lim _{x \rightarrow 1} f(x) \) b) \( \lim _{x \rightarrow 3} g(x) \) c) \( \lim _{x \rightarrow 1} g(f(x)) \) 26. \( f(x)=2 x^{2}-3 x+1, g(x)=\sqrt[3]{x+6} \) a) \( \lim _{x \rightarrow 4} f(x) \) b) \( \lim _{x \rightarrow 21} g(x) \) c) \( \lim _{x \rightarrow 4} g(f(x)) \)

Ask by Herrera Lawson. in Colombia
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Ejercicio 23:** a) 4 b) 64 c) 64 **Ejercicio 24:** a) 4 b) 16 c) 16 **Ejercicio 25:** a) 3 b) 2 c) 2 **Ejercicio 26:** a) 21 b) 3 c) 3

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

Para cada uno de los ejercicios, calculemos los límites paso a paso: **Ejercicio 23:** a) \( \lim _{x \rightarrow 1} f(x) = 5 - 1 = 4 \) b) \( \lim _{x \rightarrow 4} g(x) = 4^{3} = 64 \) c) \( \lim _{x \rightarrow 1} g(f(x)) = g(f(1)) = g(4) = 4^{3} = 64 \) **Ejercicio 24:** a) \( \lim _{x \rightarrow -3} f(x) = -3 + 7 = 4 \) b) \( \lim _{x \rightarrow 4} g(x) = 4^{2} = 16 \) c) \( \lim _{x \rightarrow -3} g(f(x)) = g(4) = 16 \) **Ejercicio 25:** a) \( \lim _{x \rightarrow 1} f(x) = 4 - 1^{2} = 3 \) b) \( \lim _{x \rightarrow 3} g(x) = \sqrt{3 + 1} = \sqrt{4} = 2 \) c) \( \lim _{x \rightarrow 1} g(f(x)) = g(3) = \sqrt{3 + 1} = 2 \) **Ejercicio 26:** a) \( \lim _{x \rightarrow 4} f(x) = 2(4^{2}) - 3(4) + 1 = 32 - 12 + 1 = 21 \) b) \( \lim _{x \rightarrow 21} g(x) = \sqrt[3]{21 + 6} = \sqrt[3]{27} = 3 \) c) \( \lim _{x \rightarrow 4} g(f(x)) = g(21) = 3 \) Así, hemos calculado los límites de cada función para los valores dados. ¡Sigue practicando!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy