Question
upstudy study bank question image url

Solve \( 7 \tan 2 \theta=6 \) for \( 0^{\circ} \leq \theta<360 \)

Ask by Wells Ray. in Singapore
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Solution

Solve the equation by following steps: - step0: Solve for \(\theta\): \(7\tan\left(2\theta \right)=6\) - step1: Find the domain: \(7\tan\left(2\theta \right)=6,\theta \neq \frac{\pi }{4}+\frac{k\pi }{2},k \in \mathbb{Z}\) - step2: Multiply both sides: \(7\tan\left(2\theta \right)\times \frac{1}{7}=6\times \frac{1}{7}\) - step3: Calculate: \(\tan\left(2\theta \right)=6\times \frac{1}{7}\) - step4: Calculate: \(\tan\left(2\theta \right)=\frac{6}{7}\) - step5: Use the inverse trigonometric function: \(2\theta =\arctan\left(\frac{6}{7}\right)\) - step6: Add the period: \(2\theta =\arctan\left(\frac{6}{7}\right)+k\pi ,k \in \mathbb{Z}\) - step7: Solve the equation: \(\theta =\frac{\arctan\left(\frac{6}{7}\right)}{2}+\frac{k\pi }{2},k \in \mathbb{Z}\) - step8: Check if the solution is in the defined range: \(\theta =\frac{\arctan\left(\frac{6}{7}\right)}{2}+\frac{k\pi }{2},k \in \mathbb{Z},\theta \neq \frac{\pi }{4}+\frac{k\pi }{2},k \in \mathbb{Z}\) - step9: Find the intersection: \(\theta =\frac{\arctan\left(\frac{6}{7}\right)}{2}+\frac{k\pi }{2},k \in \mathbb{Z}\) Calculate or simplify the expression \( \arctan\left(\frac{6}{7}\right) \). Calculate the value by following steps: - step0: Calculate: \(\arctan\left(\frac{6}{7}\right)\) Calculate or simplify the expression \( \frac{1}{2} \cdot 0.708626 \). Calculate the value by following steps: - step0: Calculate: \(\frac{1}{2}\times 0.708626\) - step1: Convert the expressions: \(\frac{1}{2}\times \frac{354313}{500000}\) - step2: Multiply the numbers: \(\frac{354313}{1000000}\) Calculate or simplify the expression \( \frac{1}{2} \cdot 0.708626 + \pi \). Calculate the value by following steps: - step0: Calculate: \(\frac{1}{2}\times 0.708626+\pi \) - step1: Multiply the numbers: \(\frac{354313}{1000000}+\pi \) - step2: Reduce fractions to a common denominator: \(\frac{354313}{1000000}+\frac{\pi \times 1000000}{1000000}\) - step3: Transform the expression: \(\frac{354313+\pi \times 1000000}{1000000}\) - step4: Reorder the terms: \(\frac{354313+1000000\pi }{1000000}\) Calculate or simplify the expression \( \frac{1}{2} \cdot 0.708626 + \frac{\pi}{2} \). Calculate the value by following steps: - step0: Calculate: \(\frac{1}{2}\times 0.708626+\frac{\pi }{2}\) - step1: Multiply the numbers: \(\frac{354313}{1000000}+\frac{\pi }{2}\) - step2: Reduce fractions to a common denominator: \(\frac{354313}{1000000}+\frac{\pi \times 500000}{2\times 500000}\) - step3: Multiply the numbers: \(\frac{354313}{1000000}+\frac{\pi \times 500000}{1000000}\) - step4: Transform the expression: \(\frac{354313+\pi \times 500000}{1000000}\) - step5: Reorder the terms: \(\frac{354313+500000\pi }{1000000}\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the equation \( 7 \tan 2\theta = 6 \), we can start by isolating \( \tan 2\theta \): \[ \tan 2\theta = \frac{6}{7} \] Next, we need to find the angles for which this tangent value is true. The tangent function is periodic with a period of \( 180^\circ \), so we will find the reference angle first. Using a calculator or inverse tangent function: \[ 2\theta = \tan^{-1}\left(\frac{6}{7}\right) \] Calculating this, we get: \[ 2\theta \approx 40.6^\circ \] Since the tangent function is also positive in the third quadrant, we have another solution: \[ 2\theta = 180^\circ + 40.6^\circ \approx 220.6^\circ \] Now, we can write two equations for \( \theta \): 1. \( 2\theta = 40.6^\circ \) Therefore, \( \theta = \frac{40.6^\circ}{2} \approx 20.3^\circ \) 2. \( 2\theta = 220.6^\circ \) Therefore, \( \theta = \frac{220.6^\circ}{2} \approx 110.3^\circ \) Now, since the tangent function has a period of \( 180^\circ \), we add \( 180^\circ \) to \( 2\theta \) for additional solutions: 3. \( 2\theta = 40.6^\circ + 180^\circ = 220.6^\circ \) Therefore, \( \theta = \frac{220.6^\circ}{2} \approx 110.3^\circ \) (which we've already found). 4. \( 2\theta = 220.6^\circ + 180^\circ = 400.6^\circ \) Therefore, \( \theta = \frac{400.6^\circ}{2} = 200.3^\circ \) To summarize, the solutions for \( \theta \) in the range \( 0^\circ \leq \theta < 360^\circ \) are: \[ \theta \approx 20.3^\circ, \quad 110.3^\circ, \quad 200.3^\circ \] Thus, the final answer is: \[ \theta \approx 20.3^\circ, \quad 110.3^\circ, \quad 200.3^\circ \]

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy