Answer
Here are the solutions to the equations:
1. \( x = \log_{5}{(60+\sqrt{3601})} - 1 \)
2. \( x = 6 \)
3. \( x = -4 \)
4. \( x_{1} = 0, \quad x_{2} = 1 \)
5. \( x = 1 \)
6. \( x_{1} = -2, \quad x_{2} = 2 \)
7. \( x = \log_{5}{(13)} - 1 \)
8. \( x_{1} = -1, \quad x_{2} = 3 \)
9. \( x = 2 \)
10. \( x = -2 - \log_{2}{(4921)} \)
11. \( x = \frac{9}{4} \) or \( x = 2.25 \)
12. \( x = 0 \)
13. \( x = \frac{4}{3} \) or \( x = 1.\dot{3} \)
14. \( \text{Unsupported calculation} \)
If you need more help with any of these, let me know!
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\left(5^{x}+10\right)\left(2^{x}-0.0625\right)=0\)
- step1: Separate into possible cases:
\(\begin{align}&5^{x}+10=0\\&2^{x}-0.0625=0\end{align}\)
- step2: Solve the equation:
\(\begin{align}&x \notin \mathbb{R}\\&x=-4\end{align}\)
- step3: Find the union:
\(x=-4\)
Solve the equation \( 6 x-5 x^{\frac{1}{2}}=6 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(6x-5x^{\frac{1}{2}}=6\)
- step1: Find the domain:
\(6x-5x^{\frac{1}{2}}=6,x\geq 0\)
- step2: Move the expression to the left side:
\(6x-5x^{\frac{1}{2}}-6=0\)
- step3: Solve using substitution:
\(6t^{2}-5t-6=0\)
- step4: Factor the expression:
\(\left(2t-3\right)\left(3t+2\right)=0\)
- step5: Separate into possible cases:
\(\begin{align}&2t-3=0\\&3t+2=0\end{align}\)
- step6: Solve the equation:
\(\begin{align}&t=\frac{3}{2}\\&t=-\frac{2}{3}\end{align}\)
- step7: Substitute back:
\(\begin{align}&x^{\frac{1}{2}}=\frac{3}{2}\\&x^{\frac{1}{2}}=-\frac{2}{3}\end{align}\)
- step8: Solve the equation for \(x:\)
\(\begin{align}&x=\frac{9}{4}\\&x \notin \mathbb{R}\end{align}\)
- step9: Find the union:
\(x=\frac{9}{4}\)
- step10: Check if the solution is in the defined range:
\(x=\frac{9}{4},x\geq 0\)
- step11: Find the intersection:
\(x=\frac{9}{4}\)
Solve the equation \( 5^{x+1}+5^{1+x}=26 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{x+1}+5^{1+x}=26\)
- step1: Evaluate:
\(2\times 5^{1+x}=26\)
- step2: Divide both sides:
\(\frac{2\times 5^{1+x}}{2}=\frac{26}{2}\)
- step3: Divide the numbers:
\(5^{1+x}=13\)
- step4: Take the logarithm of both sides:
\(\log_{5}{\left(5^{1+x}\right)}=\log_{5}{\left(13\right)}\)
- step5: Evaluate the logarithm:
\(1+x=\log_{5}{\left(13\right)}\)
- step6: Move the constant to the right side:
\(x=\log_{5}{\left(13\right)}-1\)
Solve the equation \( 9^{x}+6 \cdot 3^{x}=27 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(9^{x}+6\times 3^{x}=27\)
- step1: Move the expression to the left side:
\(9^{x}+6\times 3^{x}-27=0\)
- step2: Factor the expression:
\(\left(3^{x}-3\right)\left(3^{x}+9\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&3^{x}-3=0\\&3^{x}+9=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=1\\&x \notin \mathbb{R}\end{align}\)
- step5: Find the union:
\(x=1\)
Solve the equation \( 3^{3 x} \cdot 16=2^{3 x} \cdot 81 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{3x}\times 16=2^{3x}\times 81\)
- step1: Multiply the terms:
\(16\times 3^{3x}=81\times 2^{3x}\)
- step2: Multiply both sides:
\(\frac{1}{16}\times 16\times 3^{3x}=\frac{1}{16}\times 81\times 2^{3x}\)
- step3: Calculate:
\(3^{3x}=\frac{81}{16}\times 2^{3x}\)
- step4: Divide both sides:
\(\frac{3^{3x}}{2^{3x}}=\frac{81}{16}\)
- step5: Evaluate:
\(\left(\frac{3}{2}\right)^{3x}=\frac{81}{16}\)
- step6: Rewrite in exponential form:
\(\left(\frac{3}{2}\right)^{3x}=\left(\frac{3}{2}\right)^{4}\)
- step7: Set the exponents equal:
\(3x=4\)
- step8: Divide both sides:
\(\frac{3x}{3}=\frac{4}{3}\)
- step9: Divide the numbers:
\(x=\frac{4}{3}\)
Solve the equation \( 2^{x+1}+2^{3-x}=17 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{x+1}+2^{3-x}=17\)
- step1: Move the expression to the left side:
\(2^{x+1}+2^{3-x}-17=0\)
- step2: Factor the expression:
\(\left(2^{x}-8\right)\left(2^{x+1}-1\right)\left(2^{x}\right)^{-1}=0\)
- step3: Rewrite the expression:
\(\frac{2^{2x+1}-136\times 2^{x-3}+8}{2^{x}}=0\)
- step4: Cross multiply:
\(2^{2x+1}-136\times 2^{x-3}+8=2^{x}\times 0\)
- step5: Simplify the equation:
\(2^{2x+1}-136\times 2^{x-3}+8=0\)
- step6: Factor the expression:
\(\left(2^{x}-8\right)\left(2^{x+1}-1\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&2^{x}-8=0\\&2^{x+1}-1=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=3\\&x=-1\end{align}\)
- step9: Rewrite:
\(x_{1}=-1,x_{2}=3\)
Solve the equation \( 2^{x}=\frac{27^{\frac{1}{2}}}{3^{\frac{21}{2}}+3^{1 \frac{1}{2}}} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{x}=\frac{27^{\frac{1}{2}}}{3^{\frac{21}{2}}+3^{1\frac{1}{2}}}\)
- step1: Simplify:
\(2^{x}=\frac{1}{19684}\)
- step2: Take the logarithm of both sides:
\(\log_{2}{\left(2^{x}\right)}=\log_{2}{\left(\frac{1}{19684}\right)}\)
- step3: Evaluate the logarithm:
\(x=\log_{2}{\left(\frac{1}{19684}\right)}\)
- step4: Simplify:
\(x=-\log_{2}{\left(19684\right)}\)
- step5: Simplify:
\(x=-2-\log_{2}{\left(4921\right)}\)
Solve the equation \( 2^{\frac{x}{3}}+2^{\frac{x}{3}+1}=12 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{\frac{x}{3}}+2^{\frac{x}{3}+1}=12\)
- step1: Add the terms:
\(3\times 2^{\frac{x}{3}}=12\)
- step2: Divide both sides:
\(\frac{3\times 2^{\frac{x}{3}}}{3}=\frac{12}{3}\)
- step3: Divide the numbers:
\(2^{\frac{x}{3}}=4\)
- step4: Rewrite in exponential form:
\(2^{\frac{x}{3}}=2^{2}\)
- step5: Set the exponents equal:
\(\frac{x}{3}=2\)
- step6: Cross multiply:
\(x=3\times 2\)
- step7: Simplify the equation:
\(x=6\)
Solve the equation \( 3^{x+2}-3^{x-2}=80 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{x+2}-3^{x-2}=80\)
- step1: Subtract the terms:
\(80\times 3^{x-2}=80\)
- step2: Divide both sides:
\(\frac{80\times 3^{x-2}}{80}=\frac{80}{80}\)
- step3: Divide the numbers:
\(3^{x-2}=1\)
- step4: Rewrite in exponential form:
\(3^{x-2}=3^{0}\)
- step5: Set the exponents equal:
\(x-2=0\)
- step6: Move the constant to the right side:
\(x=0+2\)
- step7: Remove 0:
\(x=2\)
Solve the equation \( 7^{4 x}=49^{4 x} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(7^{4x}=49^{4x}\)
- step1: Rewrite the expression:
\(7^{4x}=7^{8x}\)
- step2: Set the exponents equal:
\(4x=8x\)
- step3: Add or subtract both sides:
\(4x-8x=0\)
- step4: Subtract the terms:
\(-4x=0\)
- step5: Change the signs:
\(4x=0\)
- step6: Rewrite the expression:
\(x=0\)
Solve the equation \( (5)^{x}-(5)^{-x-2}=24 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{x}-5^{-x-2}=24\)
- step1: Move the expression to the left side:
\(5^{x}-5^{-x-2}-24=0\)
- step2: Factor the expression:
\(\frac{1}{25}\left(5^{2x+2}-1-600\times 5^{x}\right)\left(5^{x}\right)^{-1}=0\)
- step3: Rewrite the expression:
\(\frac{5^{2x+2}-1-600\times 5^{x}}{5^{x+2}}=0\)
- step4: Cross multiply:
\(5^{2x+2}-1-600\times 5^{x}=5^{x+2}\times 0\)
- step5: Simplify the equation:
\(5^{2x+2}-1-600\times 5^{x}=0\)
- step6: Rewrite the expression:
\(25\times 5^{2x}-1-600\times 5^{x}=0\)
- step7: Use substitution:
\(25t^{2}-1-600t=0\)
- step8: Rewrite in standard form:
\(25t^{2}-600t-1=0\)
- step9: Solve using the quadratic formula:
\(t=\frac{600\pm \sqrt{\left(-600\right)^{2}-4\times 25\left(-1\right)}}{2\times 25}\)
- step10: Simplify the expression:
\(t=\frac{600\pm \sqrt{\left(-600\right)^{2}-4\times 25\left(-1\right)}}{50}\)
- step11: Simplify the expression:
\(t=\frac{600\pm \sqrt{600^{2}+100}}{50}\)
- step12: Simplify the expression:
\(t=\frac{600\pm 10\sqrt{3601}}{50}\)
- step13: Separate into possible cases:
\(\begin{align}&t=\frac{600+10\sqrt{3601}}{50}\\&t=\frac{600-10\sqrt{3601}}{50}\end{align}\)
- step14: Simplify the expression:
\(\begin{align}&t=\frac{60+\sqrt{3601}}{5}\\&t=\frac{600-10\sqrt{3601}}{50}\end{align}\)
- step15: Simplify the expression:
\(\begin{align}&t=\frac{60+\sqrt{3601}}{5}\\&t=\frac{60-\sqrt{3601}}{5}\end{align}\)
- step16: Substitute back:
\(\begin{align}&5^{x}=\frac{60+\sqrt{3601}}{5}\\&5^{x}=\frac{60-\sqrt{3601}}{5}\end{align}\)
- step17: Solve the equation for \(x:\)
\(\begin{align}&x=\log_{5}{\left(60+\sqrt{3601}\right)}-1\\&x \notin \mathbb{R}\end{align}\)
- step18: Find the union:
\(x=\log_{5}{\left(60+\sqrt{3601}\right)}-1\)
Solve the equation \( 2^{2 x}-3 \cdot 2^{x}=-2 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{2x}-3\times 2^{x}=-2\)
- step1: Move the expression to the left side:
\(2^{2x}-3\times 2^{x}-\left(-2\right)=0\)
- step2: Remove the parentheses:
\(2^{2x}-3\times 2^{x}+2=0\)
- step3: Factor the expression:
\(\left(2^{x}-2\right)\left(2^{x}-1\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&2^{x}-2=0\\&2^{x}-1=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=1\\&x=0\end{align}\)
- step6: Rewrite:
\(x_{1}=0,x_{2}=1\)
Solve the equation \( 3^{2+x}+3^{2-x}=82 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{2+x}+3^{2-x}=82\)
- step1: Move the expression to the left side:
\(3^{2+x}+3^{2-x}-82=0\)
- step2: Factor the expression:
\(\left(3^{x}-9\right)\left(3^{x+2}-1\right)\left(3^{x}\right)^{-1}=0\)
- step3: Rewrite the expression:
\(\frac{3^{2x+2}-738\times 3^{x-2}+9}{3^{x}}=0\)
- step4: Cross multiply:
\(3^{2x+2}-738\times 3^{x-2}+9=3^{x}\times 0\)
- step5: Simplify the equation:
\(3^{2x+2}-738\times 3^{x-2}+9=0\)
- step6: Factor the expression:
\(\left(3^{x}-9\right)\left(3^{x+2}-1\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&3^{x}-9=0\\&3^{x+2}-1=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=2\\&x=-2\end{align}\)
- step9: Rewrite:
\(x_{1}=-2,x_{2}=2\)
Here are the solutions to the equations provided:
1. **Equation:** \( (5)^{x} - (5)^{-x-2} = 24 \)
**Solution:**
\[
x = \log_{5}{(60+\sqrt{3601})} - 1
\]
2. **Equation:** \( 2^{\frac{x}{3}} + 2^{\frac{x}{3}+1} = 12 \)
**Solution:**
\[
x = 6
\]
3. **Equation:** \( (5^{x} + 10)(2^{x} - 0.0625) = 0 \)
**Solution:**
\[
x = -4
\]
4. **Equation:** \( 2^{2x} - 3 \cdot 2^{x} = -2 \)
**Solution:**
\[
x_{1} = 0, \quad x_{2} = 1
\]
5. **Equation:** \( 9^{x} + 6 \cdot 3^{x} = 27 \)
**Solution:**
\[
x = 1
\]
6. **Equation:** \( 3^{2+x} + 3^{2-x} = 82 \)
**Solution:**
\[
x_{1} = -2, \quad x_{2} = 2
\]
7. **Equation:** \( 5^{x+1} + 5^{1+x} = 26 \)
**Solution:**
\[
x = \log_{5}{(13)} - 1
\]
8. **Equation:** \( 2^{x+1} + 2^{3-x} = 17 \)
**Solution:**
\[
x_{1} = -1, \quad x_{2} = 3
\]
9. **Equation:** \( 3^{x+2} - 3^{x-2} = 80 \)
**Solution:**
\[
x = 2
\]
10. **Equation:** \( 2^{x} = \frac{27^{\frac{1}{2}}}{3^{\frac{21}{2}} + 3^{1 \frac{1}{2}}} \)
**Solution:**
\[
x = -2 - \log_{2}{(4921)}
\]
11. **Equation:** \( 6x - 5x^{\frac{1}{2}} = 6 \)
**Solution:**
\[
x = \frac{9}{4} \quad \text{or} \quad x = 2.25
\]
12. **Equation:** \( 7^{x} - 50 = -49.7^{-x} \)
**Solution:**
\[
x = 0
\]
13. **Equation:** \( 7^{4x} = 49^{4x} \)
**Solution:**
\[
x = \frac{4}{3} \quad \text{or} \quad x = 1.\dot{3}
\]
14. **Equation:** \( 3^{3x} \cdot 16 = 2^{3x} \cdot 81 \)
**Solution:**
\[
\text{Unsupported calculation}
\]
If you need further assistance or clarification on any of these solutions, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution