Question
upstudy study bank question image url

\( 5 \quad(5)^{x}-(5)^{-x-2}=24 {} 6 \quad 2^{\frac{x}{3}}+2^{\frac{x}{3}+1}=12 {} 7\left(5^{x}+10\right)\left(2^{x}-0,0625\right)=0 {} 8 \quad 2^{2 x}-3.2^{x}=-2 {} 9 \quad 9^{x}+6 \cdot 3^{x}=27 {} 103^{2+x}+3^{2-x}=82 {} 115^{x+1}+5^{1+x}=26 {} 122^{x+1}+2^{3-x}=17 {} 133^{x+2}-3^{x-2}=80 {} 142^{x}=\frac{27^{\frac{1}{2}}}{3^{\frac{21}{2}}+3^{1 \frac{1}{2}}} {} 15.6 x-5 x^{\frac{1}{2}}=6 {} 167^{x}-50=-49.7^{-x} {} 174.7^{4 x}=49.2^{4 x} {} 18 \quad 3^{3 x} \cdot 16=2^{3 x} \cdot 81 \)

Ask by Rose Wang. in South Africa
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the solutions to the equations: 1. \( x = \log_{5}{(60+\sqrt{3601})} - 1 \) 2. \( x = 6 \) 3. \( x = -4 \) 4. \( x_{1} = 0, \quad x_{2} = 1 \) 5. \( x = 1 \) 6. \( x_{1} = -2, \quad x_{2} = 2 \) 7. \( x = \log_{5}{(13)} - 1 \) 8. \( x_{1} = -1, \quad x_{2} = 3 \) 9. \( x = 2 \) 10. \( x = -2 - \log_{2}{(4921)} \) 11. \( x = \frac{9}{4} \) or \( x = 2.25 \) 12. \( x = 0 \) 13. \( x = \frac{4}{3} \) or \( x = 1.\dot{3} \) 14. \( \text{Unsupported calculation} \) If you need more help with any of these, let me know!

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(\left(5^{x}+10\right)\left(2^{x}-0.0625\right)=0\) - step1: Separate into possible cases: \(\begin{align}&5^{x}+10=0\\&2^{x}-0.0625=0\end{align}\) - step2: Solve the equation: \(\begin{align}&x \notin \mathbb{R}\\&x=-4\end{align}\) - step3: Find the union: \(x=-4\) Solve the equation \( 6 x-5 x^{\frac{1}{2}}=6 \). Solve the equation by following steps: - step0: Solve for \(x\): \(6x-5x^{\frac{1}{2}}=6\) - step1: Find the domain: \(6x-5x^{\frac{1}{2}}=6,x\geq 0\) - step2: Move the expression to the left side: \(6x-5x^{\frac{1}{2}}-6=0\) - step3: Solve using substitution: \(6t^{2}-5t-6=0\) - step4: Factor the expression: \(\left(2t-3\right)\left(3t+2\right)=0\) - step5: Separate into possible cases: \(\begin{align}&2t-3=0\\&3t+2=0\end{align}\) - step6: Solve the equation: \(\begin{align}&t=\frac{3}{2}\\&t=-\frac{2}{3}\end{align}\) - step7: Substitute back: \(\begin{align}&x^{\frac{1}{2}}=\frac{3}{2}\\&x^{\frac{1}{2}}=-\frac{2}{3}\end{align}\) - step8: Solve the equation for \(x:\) \(\begin{align}&x=\frac{9}{4}\\&x \notin \mathbb{R}\end{align}\) - step9: Find the union: \(x=\frac{9}{4}\) - step10: Check if the solution is in the defined range: \(x=\frac{9}{4},x\geq 0\) - step11: Find the intersection: \(x=\frac{9}{4}\) Solve the equation \( 5^{x+1}+5^{1+x}=26 \). Solve the equation by following steps: - step0: Solve for \(x\): \(5^{x+1}+5^{1+x}=26\) - step1: Evaluate: \(2\times 5^{1+x}=26\) - step2: Divide both sides: \(\frac{2\times 5^{1+x}}{2}=\frac{26}{2}\) - step3: Divide the numbers: \(5^{1+x}=13\) - step4: Take the logarithm of both sides: \(\log_{5}{\left(5^{1+x}\right)}=\log_{5}{\left(13\right)}\) - step5: Evaluate the logarithm: \(1+x=\log_{5}{\left(13\right)}\) - step6: Move the constant to the right side: \(x=\log_{5}{\left(13\right)}-1\) Solve the equation \( 9^{x}+6 \cdot 3^{x}=27 \). Solve the equation by following steps: - step0: Solve for \(x\): \(9^{x}+6\times 3^{x}=27\) - step1: Move the expression to the left side: \(9^{x}+6\times 3^{x}-27=0\) - step2: Factor the expression: \(\left(3^{x}-3\right)\left(3^{x}+9\right)=0\) - step3: Separate into possible cases: \(\begin{align}&3^{x}-3=0\\&3^{x}+9=0\end{align}\) - step4: Solve the equation: \(\begin{align}&x=1\\&x \notin \mathbb{R}\end{align}\) - step5: Find the union: \(x=1\) Solve the equation \( 3^{3 x} \cdot 16=2^{3 x} \cdot 81 \). Solve the equation by following steps: - step0: Solve for \(x\): \(3^{3x}\times 16=2^{3x}\times 81\) - step1: Multiply the terms: \(16\times 3^{3x}=81\times 2^{3x}\) - step2: Multiply both sides: \(\frac{1}{16}\times 16\times 3^{3x}=\frac{1}{16}\times 81\times 2^{3x}\) - step3: Calculate: \(3^{3x}=\frac{81}{16}\times 2^{3x}\) - step4: Divide both sides: \(\frac{3^{3x}}{2^{3x}}=\frac{81}{16}\) - step5: Evaluate: \(\left(\frac{3}{2}\right)^{3x}=\frac{81}{16}\) - step6: Rewrite in exponential form: \(\left(\frac{3}{2}\right)^{3x}=\left(\frac{3}{2}\right)^{4}\) - step7: Set the exponents equal: \(3x=4\) - step8: Divide both sides: \(\frac{3x}{3}=\frac{4}{3}\) - step9: Divide the numbers: \(x=\frac{4}{3}\) Solve the equation \( 2^{x+1}+2^{3-x}=17 \). Solve the equation by following steps: - step0: Solve for \(x\): \(2^{x+1}+2^{3-x}=17\) - step1: Move the expression to the left side: \(2^{x+1}+2^{3-x}-17=0\) - step2: Factor the expression: \(\left(2^{x}-8\right)\left(2^{x+1}-1\right)\left(2^{x}\right)^{-1}=0\) - step3: Rewrite the expression: \(\frac{2^{2x+1}-136\times 2^{x-3}+8}{2^{x}}=0\) - step4: Cross multiply: \(2^{2x+1}-136\times 2^{x-3}+8=2^{x}\times 0\) - step5: Simplify the equation: \(2^{2x+1}-136\times 2^{x-3}+8=0\) - step6: Factor the expression: \(\left(2^{x}-8\right)\left(2^{x+1}-1\right)=0\) - step7: Separate into possible cases: \(\begin{align}&2^{x}-8=0\\&2^{x+1}-1=0\end{align}\) - step8: Solve the equation: \(\begin{align}&x=3\\&x=-1\end{align}\) - step9: Rewrite: \(x_{1}=-1,x_{2}=3\) Solve the equation \( 2^{x}=\frac{27^{\frac{1}{2}}}{3^{\frac{21}{2}}+3^{1 \frac{1}{2}}} \). Solve the equation by following steps: - step0: Solve for \(x\): \(2^{x}=\frac{27^{\frac{1}{2}}}{3^{\frac{21}{2}}+3^{1\frac{1}{2}}}\) - step1: Simplify: \(2^{x}=\frac{1}{19684}\) - step2: Take the logarithm of both sides: \(\log_{2}{\left(2^{x}\right)}=\log_{2}{\left(\frac{1}{19684}\right)}\) - step3: Evaluate the logarithm: \(x=\log_{2}{\left(\frac{1}{19684}\right)}\) - step4: Simplify: \(x=-\log_{2}{\left(19684\right)}\) - step5: Simplify: \(x=-2-\log_{2}{\left(4921\right)}\) Solve the equation \( 2^{\frac{x}{3}}+2^{\frac{x}{3}+1}=12 \). Solve the equation by following steps: - step0: Solve for \(x\): \(2^{\frac{x}{3}}+2^{\frac{x}{3}+1}=12\) - step1: Add the terms: \(3\times 2^{\frac{x}{3}}=12\) - step2: Divide both sides: \(\frac{3\times 2^{\frac{x}{3}}}{3}=\frac{12}{3}\) - step3: Divide the numbers: \(2^{\frac{x}{3}}=4\) - step4: Rewrite in exponential form: \(2^{\frac{x}{3}}=2^{2}\) - step5: Set the exponents equal: \(\frac{x}{3}=2\) - step6: Cross multiply: \(x=3\times 2\) - step7: Simplify the equation: \(x=6\) Solve the equation \( 3^{x+2}-3^{x-2}=80 \). Solve the equation by following steps: - step0: Solve for \(x\): \(3^{x+2}-3^{x-2}=80\) - step1: Subtract the terms: \(80\times 3^{x-2}=80\) - step2: Divide both sides: \(\frac{80\times 3^{x-2}}{80}=\frac{80}{80}\) - step3: Divide the numbers: \(3^{x-2}=1\) - step4: Rewrite in exponential form: \(3^{x-2}=3^{0}\) - step5: Set the exponents equal: \(x-2=0\) - step6: Move the constant to the right side: \(x=0+2\) - step7: Remove 0: \(x=2\) Solve the equation \( 7^{4 x}=49^{4 x} \). Solve the equation by following steps: - step0: Solve for \(x\): \(7^{4x}=49^{4x}\) - step1: Rewrite the expression: \(7^{4x}=7^{8x}\) - step2: Set the exponents equal: \(4x=8x\) - step3: Add or subtract both sides: \(4x-8x=0\) - step4: Subtract the terms: \(-4x=0\) - step5: Change the signs: \(4x=0\) - step6: Rewrite the expression: \(x=0\) Solve the equation \( (5)^{x}-(5)^{-x-2}=24 \). Solve the equation by following steps: - step0: Solve for \(x\): \(5^{x}-5^{-x-2}=24\) - step1: Move the expression to the left side: \(5^{x}-5^{-x-2}-24=0\) - step2: Factor the expression: \(\frac{1}{25}\left(5^{2x+2}-1-600\times 5^{x}\right)\left(5^{x}\right)^{-1}=0\) - step3: Rewrite the expression: \(\frac{5^{2x+2}-1-600\times 5^{x}}{5^{x+2}}=0\) - step4: Cross multiply: \(5^{2x+2}-1-600\times 5^{x}=5^{x+2}\times 0\) - step5: Simplify the equation: \(5^{2x+2}-1-600\times 5^{x}=0\) - step6: Rewrite the expression: \(25\times 5^{2x}-1-600\times 5^{x}=0\) - step7: Use substitution: \(25t^{2}-1-600t=0\) - step8: Rewrite in standard form: \(25t^{2}-600t-1=0\) - step9: Solve using the quadratic formula: \(t=\frac{600\pm \sqrt{\left(-600\right)^{2}-4\times 25\left(-1\right)}}{2\times 25}\) - step10: Simplify the expression: \(t=\frac{600\pm \sqrt{\left(-600\right)^{2}-4\times 25\left(-1\right)}}{50}\) - step11: Simplify the expression: \(t=\frac{600\pm \sqrt{600^{2}+100}}{50}\) - step12: Simplify the expression: \(t=\frac{600\pm 10\sqrt{3601}}{50}\) - step13: Separate into possible cases: \(\begin{align}&t=\frac{600+10\sqrt{3601}}{50}\\&t=\frac{600-10\sqrt{3601}}{50}\end{align}\) - step14: Simplify the expression: \(\begin{align}&t=\frac{60+\sqrt{3601}}{5}\\&t=\frac{600-10\sqrt{3601}}{50}\end{align}\) - step15: Simplify the expression: \(\begin{align}&t=\frac{60+\sqrt{3601}}{5}\\&t=\frac{60-\sqrt{3601}}{5}\end{align}\) - step16: Substitute back: \(\begin{align}&5^{x}=\frac{60+\sqrt{3601}}{5}\\&5^{x}=\frac{60-\sqrt{3601}}{5}\end{align}\) - step17: Solve the equation for \(x:\) \(\begin{align}&x=\log_{5}{\left(60+\sqrt{3601}\right)}-1\\&x \notin \mathbb{R}\end{align}\) - step18: Find the union: \(x=\log_{5}{\left(60+\sqrt{3601}\right)}-1\) Solve the equation \( 2^{2 x}-3 \cdot 2^{x}=-2 \). Solve the equation by following steps: - step0: Solve for \(x\): \(2^{2x}-3\times 2^{x}=-2\) - step1: Move the expression to the left side: \(2^{2x}-3\times 2^{x}-\left(-2\right)=0\) - step2: Remove the parentheses: \(2^{2x}-3\times 2^{x}+2=0\) - step3: Factor the expression: \(\left(2^{x}-2\right)\left(2^{x}-1\right)=0\) - step4: Separate into possible cases: \(\begin{align}&2^{x}-2=0\\&2^{x}-1=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=1\\&x=0\end{align}\) - step6: Rewrite: \(x_{1}=0,x_{2}=1\) Solve the equation \( 3^{2+x}+3^{2-x}=82 \). Solve the equation by following steps: - step0: Solve for \(x\): \(3^{2+x}+3^{2-x}=82\) - step1: Move the expression to the left side: \(3^{2+x}+3^{2-x}-82=0\) - step2: Factor the expression: \(\left(3^{x}-9\right)\left(3^{x+2}-1\right)\left(3^{x}\right)^{-1}=0\) - step3: Rewrite the expression: \(\frac{3^{2x+2}-738\times 3^{x-2}+9}{3^{x}}=0\) - step4: Cross multiply: \(3^{2x+2}-738\times 3^{x-2}+9=3^{x}\times 0\) - step5: Simplify the equation: \(3^{2x+2}-738\times 3^{x-2}+9=0\) - step6: Factor the expression: \(\left(3^{x}-9\right)\left(3^{x+2}-1\right)=0\) - step7: Separate into possible cases: \(\begin{align}&3^{x}-9=0\\&3^{x+2}-1=0\end{align}\) - step8: Solve the equation: \(\begin{align}&x=2\\&x=-2\end{align}\) - step9: Rewrite: \(x_{1}=-2,x_{2}=2\) Here are the solutions to the equations provided: 1. **Equation:** \( (5)^{x} - (5)^{-x-2} = 24 \) **Solution:** \[ x = \log_{5}{(60+\sqrt{3601})} - 1 \] 2. **Equation:** \( 2^{\frac{x}{3}} + 2^{\frac{x}{3}+1} = 12 \) **Solution:** \[ x = 6 \] 3. **Equation:** \( (5^{x} + 10)(2^{x} - 0.0625) = 0 \) **Solution:** \[ x = -4 \] 4. **Equation:** \( 2^{2x} - 3 \cdot 2^{x} = -2 \) **Solution:** \[ x_{1} = 0, \quad x_{2} = 1 \] 5. **Equation:** \( 9^{x} + 6 \cdot 3^{x} = 27 \) **Solution:** \[ x = 1 \] 6. **Equation:** \( 3^{2+x} + 3^{2-x} = 82 \) **Solution:** \[ x_{1} = -2, \quad x_{2} = 2 \] 7. **Equation:** \( 5^{x+1} + 5^{1+x} = 26 \) **Solution:** \[ x = \log_{5}{(13)} - 1 \] 8. **Equation:** \( 2^{x+1} + 2^{3-x} = 17 \) **Solution:** \[ x_{1} = -1, \quad x_{2} = 3 \] 9. **Equation:** \( 3^{x+2} - 3^{x-2} = 80 \) **Solution:** \[ x = 2 \] 10. **Equation:** \( 2^{x} = \frac{27^{\frac{1}{2}}}{3^{\frac{21}{2}} + 3^{1 \frac{1}{2}}} \) **Solution:** \[ x = -2 - \log_{2}{(4921)} \] 11. **Equation:** \( 6x - 5x^{\frac{1}{2}} = 6 \) **Solution:** \[ x = \frac{9}{4} \quad \text{or} \quad x = 2.25 \] 12. **Equation:** \( 7^{x} - 50 = -49.7^{-x} \) **Solution:** \[ x = 0 \] 13. **Equation:** \( 7^{4x} = 49^{4x} \) **Solution:** \[ x = \frac{4}{3} \quad \text{or} \quad x = 1.\dot{3} \] 14. **Equation:** \( 3^{3x} \cdot 16 = 2^{3x} \cdot 81 \) **Solution:** \[ \text{Unsupported calculation} \] If you need further assistance or clarification on any of these solutions, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Did you know that exponential equations like these have been around for centuries? The mathematical foundations were laid by great minds like John Napier in the early 17th century, who introduced logarithms to simplify such calculations. Over the years, mathematicians have developed various strategies and rules for solving these equations, making them a staple of algebra and calculus! In real life, understanding exponential equations is more than just a school exercise—it’s pivotal in various fields! Whether you're calculating population growth, interest rates in finance, or even the spread of diseases, exponential functions are the go-to tools. They help us model situations where change accelerates rapidly, showing just how powerful math can be in interpreting the world around us.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy